Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt a+71=n2 (n thuộc N) <=> 4a+284=4n2 (1)
4a-31=m2 (m thuộc N) (2)
Trừ cả 2 vế của (1) cho 2 vế của (2) ta được:
4n2-m2=315
<=> (2n-m)(2n+m)=32.5.7
Vì m, n thuộc N nên ta có:
TH1: 2n-m=9 và 2n+m=35 <=>n=11;m=13
TH2:2n-m=3 và 2n+m=105 <=>n=27; m=51
TH3:2n-m=5 và 2n+m=67 <=>n=17 và m=29
TH4: 2n-m=7 và 2n+m=45 <=> n=13 và m=19
TH5:2n-m=15 và 2n+m=21 <=>n=9 và m=3
Ta có a+71=n2
=> a lớn nhất khi n lớn nhất
=>n=27
=>a=272-71=658
Vậy max a=658
lập phương của 1 số tự nhiên là số x\(^3\)
tick mik nha
Đặt a1=14;a2=144;a3=1444;an=144..4, ta xét các trường hợp a, n<4.
Ta dễ dàng thấy a1=14 không phải là số chính phương và a2=144=122 ; a3=1444=382 là các số chính phương.
b,n>4
Ta có : an=144..4=10000b+4444(bεZ)
Vì 10000:16 và 4444 chia 16 dư 12 nên an chia 16 dư 12
Giả sử an=(4k+2)2=16(k2+k)+4=>an chia 16 dư 4. Vô lý.
Vậy an không phải là số chính phương.
Kết luận : Trong dãy số tự nhiên an=144..4,, chỉ có a2=144 và a3=1444 là các số chính phương