K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2018

Có : 185 = x^2 + (x-3)^2 = x^2+x^2-6x+9 = 2x^2-6x+9

<=> 2x^2-6x+9-185 = 0

<=> 2x^2-6x-176 = 0

<=> x^2-3x-88 = 0

<=> (x^2-11x)+(8x-88) = 0

<=> (x-11).(x+8) = 0

<=> x-11=0 hoặc x+8=0

<=> x=11 hoặc x=-8

<=> x=11 ( vì x > 0 )

Vậy x = 11

Tk mk nha

14 tháng 10 2019

ta có \(\Delta=\left(2m-1\right)^2-4\left(m-2\right)\)

\(\Delta=4m^2-8m+9\)

\(\Delta=\left(2m-2\right)^2+5>0\)

do dó phương trình đã cho có 2 nghiệm phân biệt x1 ; x2

áp dụng định lí Vi-ét ta có: \(\hept{\begin{cases}s=x_1+x_2=2m-1\\p=x_1.x_2=m-2\end{cases}}\)

theo bài ra:   x13  +  x23 = 27 

<=> (x1 + x2 )3 - 3x1x2  (x1+x2)  - 27=0   <=>  (2m-1)3 - 3(m-2) ( 2m-1) -27 =0

<=>  8m3 -12m2 +6m-1 - 6m2 +15m - 6 - 27 =0

<=> 8m3 - 18m2 + 21m - 34 =0 <=>  (m-2)(8m2 -2m+17) = 0 

\(\Rightarrow\hept{\begin{cases}m-2=0\\8m^2-2m+17=0\left(PTVN\right)\end{cases}}\) <=> m=2

Vậy m=2 thỏa mãn đề bài

( chú giải: PTVN là phương trình vô nghiệm)

17 tháng 3 2020

a) Hoành độ giao điểm của ( P ) và ( d ) là nghiệm phương trình:

\(x^2=2mx-2m+3\) (2)

<=> \(x^2-2mx+2m-3=0\)

Có: \(\Delta'=m^2-\left(2m-3\right)=m^2-2m+3=\left(m-1\right)^2+2>0\)với mọi m

=> Với mọi m phương trình (2) luôn có hai nghiệm phân biết

=> Với mọi m (d) luôn cắt ( P ) tại hai điểm phân biệt 

___________

c) Để phương trình (1) có nghiệm điều kiện là: \(\Delta'=\left(k-1\right)^2-\left(k-3\right)=k^2-3k+4=\left(k-\frac{3}{2}\right)^2+\frac{7}{4}>0\)với mọi m

=> Phương trình (1) có 2 nghiệm \(x_1;x_2\)với mọi m 

Áp dụng định lí viets ta có: \(\hept{\begin{cases}x_1+x_2=2\left(k-1\right)\\x_1.x_2=k-3\end{cases}}\)mà \(x_1=\frac{5}{3}x_2\)

nên : \(\frac{5}{3}x_2+x_2=2k-2\)<=> \(\frac{8}{3}x_2=2k-2\)<=> \(x_2=\frac{3}{4}\left(k-1\right)\)

khi đó: \(x_1=\frac{5}{3}x_2=\frac{5}{4}\left(k-1\right)\)

Suy ra \(x_1.x_2=k-3\)<=> \(\frac{15}{16}\left(k-1\right)^2=k-3\)

<=> \(15k^2-46k+63=0\)(3)

có: \(\Delta\)<0 

=> (3) vô nghiệm

=> không tồn tại k

13 tháng 3 2021

Ta có \(x^2+9x+20=0\Leftrightarrow\left(x+4\right)\left(x+5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-5\end{matrix}\right.\).

Xét 2 TH:

+) a + b = -4; ab = -5: Theo định lý Viet đảo ta có a, b là hai nghiệm của pt \(t^2+4t-5=0\Leftrightarrow\left(t-1\right)\left(t+5\right)=0\Leftrightarrow\left[{}\begin{matrix}t=1\\t=-5\end{matrix}\right.\)

+) a + b = -5; ab = -4: Bạn giải tương tự.