Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABCΔABC có :
AB=ACAB=AC ( gt )
⇒ΔABC⇒ΔABC cân tại AˆA^
⇒Bˆ=Cˆ⇒B^=C^
Ta có : AB=AC⇒12AB=12AC⇒BM=CNAB=AC⇒12AB=12AC⇒BM=CN
Xét ΔBNCΔBNC và ΔCMBΔCMB có :
CN=BM(cmt)CN=BM(cmt)
Bˆ=Cˆ(cmt)B^=C^(cmt)
ACAC là cạnh chung
Do đó 2 tam giác bằng nhau.
Vậy ...................
LINK MÌNH NHA
A) tam giác AMB và tam giác AMN có: AN=AB; A1=A2. ÂM chứng => tam giác AMB=tam giác AMN(c.g.c)=> MB=MN ( 2 cạnh tương ứng)
b) tam giác AMB=tam giác AMN (cmt)=> góc ABM=góc ANM.
góc ABM+góc MBK=180 độ; góc ANM+góc MNC=180
=> góc MBK=góc MNC
tam giác MBK và tam giác MNC: góc MBK=góc MNC(cmt); MB=MN(cmt); góc BMK=góc NMC(đối đỉnh)=> 2 tam giác = nhau (g.c.g)
c)tam giác MBK = tam giác MNC=> BK=NC
AK=AB+Bk; AC=AN+NC. mà AB=AN; BK=NC
=> AK=AC => tam giác AKC cân tại A. AM là phân giác => đồng thời là đường cao => AM vuông góc KC.
tam giác ABN cân tại A(AB=AN) => AM là phân giác đồng thời là đường cao => AM vuông góc BN
=> KC//BN( cùng vuông góc với AM)
d) AB=AN=> AC-AB=AC-AN=NC(1)
tam giác MBK = tam giác MNC=> MB=MN
=> MC-MB=MC-MN
áp dụng bất đẳng thức tam giác ta có: NC+MN>MC <=> NC>MC-MN
hay AC-AB>MC-MB
mình làm bài này vừa phải kẻ hình lại còn dài nữa, nhớ L I K E nha. haizz
Xét \(\Delta\)ABM và \(\Delta\)AMN có :
AM chung
Góc A1= góc A2 ( gt )
AB=AN ( gt)
=>\(\Delta\)ABM=\(\Delta\)AMN ( c.g.c)
=> BM=MN
b . Ta có : góc ABM + góc MBK = 1800( vì kề bù )
Tương tự : góc ANM + góc MNC = 1800
Mà : góc ABM = góc AMN ( vì \(\Delta\)ABM = \(\Delta\)AMN )
=> góc MBK = góc MNC
Xét \(\Delta\)MBK và\(\Delta\)MNC có :
góc MBK = góc MNC ( CMT)
BM=CM ( theo câu a )
Góc M1= góc M2 ( đối đỉnh )
=> \(\Delta\)MBK = \(\Delta\)MNC ( g.c.g)
Bạn kí hiệu A1,A2,M1,M2 giùm mình nhé !! A B C M N K
1. Nếu AB = AC:
Xét tam giác ABN và tam giác ACM có:
AN = AM (gt)
AB = AC (gt)
Góc A chung
\(\Rightarrow\Delta ABN=\Delta ACM\left(c-g-c\right)\)
\(\Rightarrow BN=CM\) (Hai cạnh tương ứng)
2.
a) Trên cạnh AB lấy điểm M' sao cho AM' = AC.
Ta có ngay \(\Delta AM'N=\Delta ACM\left(c-g-c\right)\)
\(\Rightarrow MC=NM'\)
Lại có AM' < AB nên NM' < NB
Vậy nên BN > CM
b) Ta thấy ngay MK > KN mà BN > MC nên BK = BN - KN > KC = MC - MK