Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đề là:Số 6 được viết bằng tổng của hai số nguyên dương theo ba cách khác nhau: $ 6 = 1 + 5 = 2 + 4 = 3 + 3. $ (thứ tự KHÔNG quan trọng). Nghĩa là, có chính xác ba cặp khác nhau của số nguyên dương mà thêm để bằng sáu. Có bao nhiêu cặp số nguyên dương cộng thêm bằng 1000?(ý là có mấy số cộng lại = 1000 )
=> The x numbers are 5 \(\le\) x \(\le\) 102
So the numbers to look for x = { 5,6,7,8,...,102 }
Biến đổi bất đẳng thức ta được:
1 < x - 3 và 1 < 3 - x. Suy ra: x > 4 và x < 2 (1)
x - 3 < 100 và 3 - x < 100. Suy ra: x < 103 và x > 2 (1)
Từ (1) và (2) suy ra: -97 < x < 2 và 4 < x < 103
Xét: -97 < x < 2, ta có: Số số nguyên thỏa mãn là: [1 - (-96)] : 1 + 1 = 98 (số)
Xét: 4 < x < 103, ta có: Số số nguyên thỏa mãn là: (102 - 5] : 1 + 1 = 98 (số)
Vậy: Số số nguyên thỏa mãn 1 < │x - 3│ < 100 là: 98 + 98 = 196 (số)
Câu 1: Cho chia hết cho 9. giá trị là gì?
Câu 2: Có bao nhiêu phần tử của tập A chia hết cho 9?
Câu 3: A là một tập hợp các bội số của 12 ít hơn 12. Làm thế nào nhiều yếu tố không tập A có?
Câu 4: Tìm dư khi chia cho 3. Câu 5: Cho rằng 511 là tổng của hai số nguyên tố và,. giá trị là gì?
Câu 6: Cho rằng. Tìm giá trị của.
Câu 7: Cho rằng. không số A có bao nhiêu ước?
Câu 8: Tìm số tự nhiên vì thế sản phẩm và 5 là số nguyên tố.
Câu 9: Cho rằng. không số A có bao nhiêu ước?
Câu 10: Cho rằng. Một số có bao nhiêu ước?
Câu 1: Given that is divisible by 9. What is the value of ?
Câu 2: How many elements of the set A are divisible by 9?
Câu 3:A is a set of multiples of 12 less than 12. How many elements does the set A have?
Câu 4:Find the remainder when is divided by 3.
Câu 5:Given that 511 is the sum of two prime numbers and , . What is the value of ?
Câu 6:Given that . Find the value of .
Câu 7:Given that . How many divisors does the number A have?
Câu 8:Find the natural number so that the product of and 5 is a prime number.
Câu 9:
Given that . How many divisors does the number A have?
Câu 10:
Given that . How many divisors the number A have?
Có bao nhiêu số nguyên dương ít hơn 200 tương đối chính đến 15 hoặc 24
dich thôi