Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{-2}{5}+\frac{5}{6}.x=\frac{-4}{15}\)
\(\frac{5}{6}.x=\frac{-4}{15}-\frac{-2}{5}\)
\(\frac{5}{6}.x=\frac{2}{15}\)
\(x=\frac{2}{15}:\frac{5}{6}\)
\(x=\frac{4}{25}\)
b) \(\left(x-\frac{1}{5}\right)\left(y+\frac{1}{2}\right)\left(z-3\right)=0\)
\(x-\frac{1}{5}=0\)
\(x=0+\frac{1}{5}\)
\(x=\frac{1}{5}\)
b)
\(4\frac{5}{9}:2\frac{5}{18}-7< x< \left(3\frac{1}{5}:3,2+4,5.1\frac{31}{45}\right):\left(21.\frac{1}{2}\right)\)
\(\Rightarrow\frac{41}{9}:\frac{41}{18}-7< x< \left(\frac{16}{5}:\frac{16}{5}+\frac{9}{2}.\frac{76}{45}\right):\frac{21}{2}\)
\(\Rightarrow2-7< x< \left(1+\frac{38}{5}\right):\frac{21}{2}\)
\(\Rightarrow-5< x< \frac{43}{5}:\frac{21}{2}\)
\(\Rightarrow-5< x< \frac{86}{105}\)
Vì \(x\in Z\left(gt\right)\)
\(\Rightarrow x\in\left\{-4;-3;-2;-1;0\right\}.\)
Vậy \(x\in\left\{-4;-3;-2;-1;0\right\}.\)
Ta có
\(\begin{cases}\left|x-\frac{1}{2}\right|\ge0\\\left|y+\frac{3}{2}\right|\ge0\\\left|x+y-z-\frac{1}{2}\right|\ge0\end{cases}\)
Maf \(\left|x-\frac{1}{2}\right|+\left|y+\frac{3}{2}\right|+\left|x+y-z-\frac{1}{2}\right|=0\)
\(\Rightarrow\begin{cases}x-\frac{1}{2}=0\\y+\frac{3}{2}=0\\x+y-z-\frac{1}{2}=0\end{cases}\)
\(\Rightarrow\begin{cases}x=\frac{1}{2}\\y=-\frac{3}{2}\\x+y-z=\frac{1}{2}\end{cases}\)
\(\Rightarrow\begin{cases}x=\frac{1}{2}\\y=-\frac{3}{2}\\\frac{1}{2}-\frac{3}{2}-z=\frac{1}{2}\end{cases}\)
\(\Rightarrow\begin{cases}x=\frac{1}{2}\\y=-\frac{3}{2}\\-z=\frac{3}{2}\end{cases}\)
\(\Rightarrow\begin{cases}x=\frac{1}{2}\\y=-\frac{3}{2}\\z=-\frac{3}{2}\end{cases}\)
\(\left(a+b\right)^2\ge4ab\Rightarrow\frac{a^2+b^2}{ab\left(a+b\right)}\ge\frac{4ab}{ab\left(a+b\right)}\)bài1
a) ta có \(\left(a-b\right)^2\ge0\) với mọi a,b\(\in\)N*
=> \(a^2-2ab+b^2\ge0\Rightarrow a^2+b^2\ge2ab\Rightarrow\frac{a^2}{ab}+\frac{b^2}{ab}\ge2\Rightarrow\frac{a}{b}+\frac{b}{a}\ge2\)
b) tương tự ta có \(a^2+b^2\ge2ab\)
\(\left(a+b\right)^2\ge4ab\Rightarrow\frac{\left(a+b\right)^2}{ab\left(a+b\right)}\ge\frac{4ab}{ab\left(a+b\right)}\)(do a,b\(\in\)N*)
\(\Rightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\Rightarrow\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)
bài 2 chịu
b) \(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)
<=> \(x^2+y^2+z^2+3-2x-2y-2x\ge0\)
<=> \(\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2\ge0\)luôn đúng
Dấu "=" xảy ra <=> x=y=z=1