K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 8 2021

\(\Rightarrow\left(x^2+2\right)^2=2x^4-4x^2+m\)

\(\Rightarrow m=-x^4+8x^2+4\)

BBT \(f\left(x\right)=-x^4+8x^2+4\Rightarrow4< m< 20\)

25 tháng 8 2021

Phương trình ⇒ (x2 + 2)2 = 2x4 - 4x2 + m

⇔ m = - x4 + 8x2 + 4 (1)

(1) là phương trình hoành độ giao điểm của đồ thị hàm số y = m và độ thị hàm số y = f(x) =  - x4 + 8x2 + 4.

Đạo hàm : \(y'\) = - 4x3 + 16x = x (16 - 4x2) = x (4 - 2x) (4 + 2x)

y' = 0 ⇔ \(\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\) 

y' > 0 ⇔ x ∈ \(\left(-\infty;-\dfrac{1}{2}\right)\cup\left(0;\dfrac{1}{2}\right)\) (Đồng biến)

y' < 0 ⇔ x ∈ \(\left(-\dfrac{1}{2};0\right)\cup\left(\dfrac{1}{2};+\infty\right)\) (nghịch biến)

(1) có 4 nghiệm phân biệt khi y = m cắt y = f(x) tại 4 điểm phân biệt

⇔ f(0) < m < f\(\left(\dfrac{1}{2}\right)\)

⇔ 4 < m < 20

 

 

 

31 tháng 7 2017

Đáp án D

Từ đồ thị đã cho, ta suy ra đồ thị của hàm số  

Từ đó ta có kết quả thỏa mãn yêu cầu bài toán 

NV
25 tháng 8 2021

\(\Leftrightarrow\left\{{}\begin{matrix}3.2^xlogx-12logx-2^x+4=0\left(1\right)\\5^x=m\left(2\right)\end{matrix}\right.\) và \(5^x\ge m\) (\(x>0\))

Xét (1):

\(\Leftrightarrow3logx\left(2^x-4\right)-\left(2^x-4\right)=0\)

\(\Leftrightarrow\left(3logx-1\right)\left(2^x-4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x_1=2\\x_2=\sqrt[3]{10}\end{matrix}\right.\)

\(y=5^x\) đồng biến trên R nên (2) có tối đa 1 nghiệm

 Để pt đã cho có đúng 2 nghiệm phân biệt  ta có các TH sau:

TH1: (2) vô nghiệm \(\Rightarrow m\le0\) (ko có số nguyên dương nào)

TH2: (2) có nghiệm (khác với 2 nghiệm của (1)), đồng thời giá trị của m khiến cho đúng 1 nghiệm của (1) nằm ngoài miền xác định

(2) có nghiệm \(\Rightarrow m>0\Rightarrow x_3=log_5m\)

Do \(\sqrt[3]{10}>2\) nên bài toán thỏa mãn khi: \(x_1< x_3< x_2\)

\(\Rightarrow2< log_5m< \sqrt[3]{10}\)

\(\Rightarrow25< m< 5^{\sqrt[3]{10}}\) (hơn 32 chút xíu)

\(\Rightarrow\) \(32-26+1\) giá trị nguyên

2 tháng 1 2018

Chọn B.

Ta có

T

Ta có bảng biến thiên của hàm số như sau:

Từ bảng biến thiên ta thấy, phương trình  2 x 4 - 4 x 2 + 3 2   =   m 2 - m + 1 2   có đúng 8 nghiệm thực phân biệt 


16 tháng 4 2019

Chọn D.

Đặt   khi đó phương trình tương đương với: t2 - 6t + m 3 = 0 (*)

Để phương trình đã cho có 4 nghiệm phân biệt khi (*) có 2 nghiệm dương phân biệt lớn hơn 1.

9 tháng 1 2018

25 tháng 9 2018

6 tháng 4 2018

18 tháng 8 2018

Chọn D.

9 tháng 8 2019

Đáp án B

Điều kiện 

Phương trình đã cho tương đương với:

Đặt t = x 2 ≥ 1 , theo bài ra ta có  1 ≤ x 1 < x 2 ≤ 3 ⇔ 1 ≤ x 1 2 < x 2 2 ≤ 9 ⇒ t ∈ 1 ; 9

Xét hàm số f ( t ) = 2 - ( t - 1 ) . log ( t + 1 )  trên đoạn 1 ; 9 .

Ta có

⇒ Hàm số f ( t )  đồng biến trên đoạn  1 ; 9 . Khi đó  f ( 1 ) ≤ f ( t ) ≤ 9  hay  1 ≤ f ( t ) ≤ 4 .

Đặt u = 2 ( x 2 - 1 ) . log ( x 2 + 1 ) ⇒ u ∈ 0 ; 4 . Khi đó phương trình *  trở thành u 2 - 2 m . u + 2 m + 8 = 0 1 .

Nhận thấy u = 1  không phải là nghiệm của phương trình 1 . Với  u ≠ 1  thì phương trình  1  tương đương với  u 2 + 8 = 2 m ( u - 1 ) ⇔ 2 m = u 2 + 8 u - 1 2

Xét hàm số  g u = u 2 + 8 u - 1  trên đoạn 0 ; 4 \ 1 .

Ta có  g ' u = u 2 - 2 u - 8 u - 1 2 ; g ' ( u ) = 0 ⇔ [ u = - 2 u = 4 . Mà  u ∈ 0 ; 4 \ 1  nên u = 4 .

Mặt khác, có g ( 0 ) = - 8 ;  g ( 4 ) = 8 ; lim x → 1 - g ( u ) = - ∞ ;  lim x → 1 + g ( u ) = = ∞ .

Bảng biến thiên:

Yêu cầu bài toán ⇔ Phương trình 2  có nghiệm duy nhất trên đoạn   0 ; 4 \ 1 .

Suy ra

Mặt khác m ∈ ℤ ,  m ∈ - 2017 ; 2017  nên suy ra

Vậy có tất cả 2017 - 4 + 1 + - 4 + 2017 + 1 = 4028  giá trị m nguyên thỏa mãn bài toán.