K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2014

ĐK x >=0. Đặt \(\sqrt{x}\) = t>=0. ta có PT: \(t^4\)\(t^2\) - 5 = 0.

Đặt y = \(t^2\)>=0 suy ra \(y^2\)+ y - 5 = 0.Giải PT y = ( - 1 + \(\sqrt{21}\))/2 (loại nghiệm âm).

suy ra \(t^2\) = (10 - \(\sqrt{21}\))/2.Giải tương tự tìm x

27 tháng 5 2022

`48/[x+4]+48/[x-4]=5`           `ĐK: x \ne +-4`

`<=>[48(x-4)+48(x+4)]/[(x-4)(x+4)]=[5(x+4)(x-4)]/[(x-4)(x+4)]`

   `=>48x-192+48x+192=5x^2-80`

`<=>5x^2-96x-80=0`

`<=>5x^2-100+4x-80=0`

`<=>5x(x-20)+4(x-20)=0`

`<=>(x-20)(5x+4)=0`

`<=>` $\left[\begin{matrix} x=20\\ x=\dfrac{-4}{5}\end{matrix}\right.$   (t/m)

Vậy `S={-4/5;20}`

27 tháng 5 2022

ĐK : \(x\ne\pm4\)

\(\Leftrightarrow\cdot\dfrac{48\left(x+4\right)+48\left(x-4\right)}{\left(x+4\right)\left(x-4\right)}=\dfrac{5\left(x+4\right)\left(x-4\right)}{\left(x+4\right)\left(x-4\right)}\)

\(\Leftrightarrow48x+192+48x-192==5x^2-80\)

\(\Leftrightarrow96x=5x^2-80\)

\(\Leftrightarrow5x^2-96x-80=0\)

\(\Leftrightarrow5x^2+4x-100-80=0\)

\(\Leftrightarrow4\left(x-20\right)+5x\left(x-20\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-20=0\\5x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=20\\x=-\dfrac{4}{5}\end{matrix}\right.\)

27 tháng 5 2022

\(\left(x+2\right)\left(\dfrac{360}{x}-6\right)=360\)

\(ĐK:x\ne0\)

\(\Leftrightarrow\left(x+2\right)\left(\dfrac{360-6x}{x}\right)=360\)

\(\Leftrightarrow360-6x+\dfrac{720-12x}{x}=360\)

\(\Leftrightarrow360x-6x^2+720-12x=360x\)

\(\Leftrightarrow6x^2+12x-720=0\)

\(\Delta=12^2-4.6.\left(-720\right)\)

    \(=17424>0\)

`->` pt có 2 nghiệm

\(\left\{{}\begin{matrix}x_1=\dfrac{-12-\sqrt{17424}}{12}=-12\\x_2=\dfrac{-12+\sqrt{17424}}{12}=10\end{matrix}\right.\) ( tm )

Vậy \(S=\left\{-12;10\right\}\)

NV
23 tháng 3 2022

\(\Delta=\left(m+5\right)^2-4\left(3m+6\right)=m^2-2m+1=\left(m-1\right)^2\ge0\) ;\(\forall m\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m+5\\x_1x_2=3m+6\end{matrix}\right.\) 

Do \(x_1;x_2\) là độ dài 2 cạnh tam giác nên \(x_1>0;x_2>0\)

\(\Rightarrow\left\{{}\begin{matrix}m+5>0\\3m+6>0\end{matrix}\right.\) \(\Rightarrow m>-2\)

Khi đó, áp dụng định lý Pitago:

\(x_1^2+x_2^2=5^2\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=25\)

\(\Leftrightarrow\left(m+5\right)^2-2\left(3m+6\right)=25\)

\(\Leftrightarrow m^2+4m-12=0\Rightarrow\left[{}\begin{matrix}m=-6< -2\left(loại\right)\\m=2\end{matrix}\right.\)

24 tháng 6 2017

a) ĐKXĐ: \(\hept{\begin{cases}\sqrt{2x-1}\ge0\\\sqrt{x-\sqrt{2x-1}}\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\x\ge\sqrt{2x-1}\Leftrightarrow\left(x-1\right)^2\ge0,\forall x\end{cases}\Rightarrow}x\ge\frac{1}{2}}\)(1)

Bình phương 2 vế PT ta được: \(2\sqrt{\left(x+\sqrt{2x-1}\right)\left(x-\sqrt{2x-1}\right)}=2-2x\Leftrightarrow\sqrt{\left(x\right)^2-\left(\sqrt{2x-1}\right)^2}=1-x\)

\(\Leftrightarrow\sqrt{x^2-2x+1}=1-x\Leftrightarrow\left|x-1\right|=1-x\Rightarrow x-1\le0\)(vì \(\left|a\right|=-a\))

\(\Rightarrow x\le1\)(2)

Kết hợp (1) và (2) ta được tập nghiệm của PT là \(\frac{1}{2}\le x\le1\)

b) ĐKXĐ: \(\hept{\begin{cases}\sqrt{2x-5}\ge0\\x-2-\sqrt{2x-5}\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge\frac{5}{2}\\\left(x-2\right)^2\ge2x-5\Leftrightarrow\left(x-3\right)^2\ge0,\forall x\end{cases}\Rightarrow}x\ge\frac{5}{2}}\)(1)

Bình phương 2 vế PT ta được: \(2\sqrt{\left(x+2+3\sqrt{2x-5}\right)\left(x-2-\sqrt{2x-5}\right)}=2\left(4-x-\sqrt{2x-5}\right)\)

Đặt \(x+2=a;\sqrt{2x-5}=b\)(\(b\ge0\)), ta được phương trình tương đương:

\(\sqrt{\left(a+3b\right)\left(a-4-b\right)}=-a+6-b\)

\(\Leftrightarrow a^2-4a-ab+3ab-12b-3b^2=36+a^2+b^2+2ab-12a-12b\)

\(\Leftrightarrow4b^2-8a+36=0\Leftrightarrow b^2=2a-9\Leftrightarrow2x-5=2x+4-9\Leftrightarrow x\in R\)(2)

Kết hợp (1) và (2) ta được tập nghiệm của PT là \(x\ge\frac{5}{2}\)

8 tháng 7 2019

Tìm giá trị lớn nhất của \(\frac{2020-x}{6-x}\)

Ta có : \(\frac{2020-x}{6-x}=\frac{6-x+2014}{6-x}=\frac{6-x}{6-x}+\frac{2014}{6-x}=1+\frac{2014}{6-x}\)

Đa thức lớn nhất \(\Leftrightarrow1+\frac{2014}{6-x}\)lớn nhất  \(\Rightarrow\frac{2014}{6-x}\)lớn nhất  \(\Rightarrow6-x\)nhỏ nhất và \(6-x>0\)

Mà \(x\in Z\)\(\Rightarrow x=5\)

Vậy giá trị lớn nhất của đa thức \(=\frac{2020-5}{6-5}=2020-5=2015\)\(\Leftrightarrow x=5\)

AH
Akai Haruma
Giáo viên
29 tháng 7 2021

Lời giải:

1. $|x-1|-|5-x|=0$

$\Leftrightarrow |x-1|=|5-x|$

$\Leftrightarrow x-1=5-x$ hoặc $x-1=x-5$

$\Leftrightarrow x=3$ hoặc $1=5$ (vô lý)

Vậy $x=3$
---------------------------

2. 

Nếu $x\geq 4$ thì pt trở thành:

$x-4+x-\frac{3}{2}=5$

$\Leftrightarrow x=5,25$ (thỏa mãn)

Nếu $\frac{3}{2}\leq x< 4$ thì:

$4-x+x-\frac{3}{2}=5\Leftrightarrow \frac{5}{2}=5$ (vô lý)

Nếu $x< \frac{3}{2}$ thì:
$4-x+\frac{3}{2}-x=5$

$\Leftrightarrow x=0,25$ (thỏa mãn)