Hoa cúc vạn thọ là gì? Ý nghĩa của hoa cúc vạn thọ ngày Tết
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Hoa cúc vạn thọ là gì? Ý nghĩa của hoa cúc vạn thọ ngày Tết

Dù đã quá quen thuộc nhưng có bao giờ bạn tự hỏi vì sao mỗi độ Xuân về, hoa vạn thọ lại khoe sắc khắp đường phố, khắp mọi gia đình chưa. Nếu chưa thì hãy cùng khám phá ý nghĩa của hoa vạn thọ ngày Tết ngay nhé.

https://hoa3mien.net/cuc-van-tho-loai-hoa-tuong-trung-cho-su-sung-tuc-cat-tuong/

Tết đến, nhà nhà lại tất bật sắm sửa, trang hoàng nhà cửa, nào là quần áo mới, bánh mứt, trái cây, bánh chưng, bánh tét,... Và làm sao thiếu được những chậu hoa xinh xắn để chưng trong nhà cơ chứ.

Bên cạnh việc điểm tô không gian thêm phần rực rỡ, mỗi loài hoa đều ẩn chứa một ý nghĩa, một thông điệp tốt lành gửi gắm đến gia chủ. Hôm nay, chúng ta hãy cùng nhau tìm hiểu ý nghĩa một loài hoa – hoa vạn thọ trong ngày Tết bạn nhé.

1 Hoa cúc vạn thọ là cây gì?Nguồn gốc hoa cúc vạn thọ

Hoa vạn thọ là gì? Đặc điểm của hoa vạn thọ

Hoa vạn thọ là gì? Đặc điểm của hoa vạn thọ

Chi Cúc vạn thọ (danh pháp khoa học: Tagetes) là một chi của khoảng 60 loài cây thân thảo một năm và lâu năm trong họ Cúc (Asteraceae). Hoa vạn thọ (cúc vạn thọ) là loài hoa có xuất xứ từ Mexico.

Đặc điểm hoa cúc vạn thọ

Chúng thuộc dạng thân thảo, mọc thẳng đứng và thường phân nhánh nhiều để tạo thành từng bụi có cành trải dài ra. Lá thì có dạng lá kép lông chim, mép hình răng cưa, thường mọc xen kẽ hoặc đối xứng nhau và ở mỗi nách lá sẽ mọc ra các nhánh phụ.

Hoa của chúng sẽ mọc đơn lẻ trên đỉnh và có hai màu chính là vàng hoặc vàng cam. Chúng thường đơm hoa từ mùa đông cho đến mùa hạ và cây giữ hoa khá lâu. Hiện nay, chúng được trồng phổ biến ở mọi nơi để làm cảnh trang trí sân vườn, vỉa hè,…

2 Phân loại hoa cúc vạn thọ

Ở nước ta có chủ yếu hai loại vạn thọ là hoa vạn thọ lùnhoa cúc vạn thọ (còn gọi là hoa vạn thọ Pháp). Nào hãy cùng tìm hiểu về 2 loại hoa vạn thọ này nhé!

Hoa vạn thọ lùn

Hoa vạn thọ lùn

Hoa rất dễ trồng, khỏe mạnh. Chiều cao cây thường trung bình 30cm và mỗi cây sẽ có khoảng 10 – 12 bông sau hơn 2 tháng trồng. Đường kính của hoa tầm 7 – 10cm với màu vàng hoặc vàng cam chủ yếu. Hoa vừa dùng để trang trí làm cảnh, vừa có thể làm hoa thờ cúng.

Hoa vạn thọ cao

Hoa vạn thọ cao là một trong những loại hoa dễ trồng. Hoa sẽ rực rỡ và khoa sắc lộng lẫy chỉ sau khoảng 60 - 70 ngày. Hoa có chiều cao khoảng 60cm nên rất thích hợp để trưng trong nhà, hoặc sân vườn.

Hoa vạn thọ cao

Hoa vạn thọ cao

Hoa vạn thọ Pháp

Hoa cúc vạn thọ (hoa vạn thọ Pháp)

Nổi bật với sắc đỏ cam rực lửa bắt mắt, hoa thơm và có nhiều cánh đều nhau và bung xòe hơn. Tương tự vạn thọ lùn, loài này cũng rất dễ trồng, khỏe mạnh. Khác ở chỗ vạn thọ Pháp sẽ ra hoa sớm hơn, thường chỉ sau 45 – 50 ngày.

Hoa vạn thọ Mỹ

Hoa vạn thọ Mỹ thuộc giống Tagetes, họ Cúc Asteraceae có nguồn gốc từ Mexico, Bắc Mỹ. Cây có chiều cao khoảng  20cm-80 cm. Lá hoa vạn thọ Mỹ có mùi hăng hắc khi vò nát, có loại không có mùi hắc ngược lại còn có hương thơm dễ chịu.

Hoa vạn thọ Mỹ

Hoa vạn thọ Mỹ

Hoa vạn thọ Thái

Hoa vạn thọ Thái là loại cây thân thảo 1 năm, cây thô, dáng thẳng đứng, cao từ 0.6 – 1m (giống vạn thọ thái cao) 30-40cm (giống vạn thọ thái lùn).

Lá mọc xen kẽ và có hình như những chiếc lông vũ mềm mại. Phiến lá hình lưỡi mác, vành và lưng của lá có đốm nâu và tiết ra mùi hôi. Giống hoa vạn thọ Thái có màu vàng hoặc màu đỏ viền vàng, độ rộng hoa nhỏ.

Hoa vạn thọ Thái

Hoa vạn thọ Thái

Hoa vạn thọ Châu Phi

Hoa vạn thọ Châu Phi có thân cao, có thể cao hơn 60cm. Cúc vạn thọ châu Phi có thể có màu trắng, kem, vàng, đỏ hoặc cam.

Hoa vạn thọ Châu Phi

Hoa vạn thọ Châu Phi

Hoa vạn thọ Mexico

Hoa vạn thọ Mexico là một loại cúc vạn thọ ăn được có nguồn gốc từ Mexico. Lá hoa có hình dạng giống bạc hà hoặc trái cây họ cam quýt.

Hoa vạn thọ Mexico

Hoa vạn thọ Mexico

3 Ý nghĩa hoa vạn thọ trong ngày Tết

Hoa vạn thọ

Hoa vạn thọ, có lẽ chỉ cần nghe cái tên thôi thì phần nào mọi người cũng đoán ra được ý nghĩa của chúng rồi đấy. Đây là loài hoa biểu tượng cho sự trường tồn, vĩnh cửu và bất diệt. Trong ngày Tết, chúng còn ẩn chứa ý nghĩa với mong ước bình an cũng như thể hiện lòng hiếu thảo đối với ông bà, cha mẹ.

Không những thế, hoa vạn thọ còn tượng trưng cho ánh mặt trời ấm áp, thể hiện khát khao một cuộc sống giàu sang, sung túc. Sắc đỏ của hoa sẽ mang ý nghĩa cho cuộc sống trường thọ, sức khỏe dồi dào. Còn vạn thọ ánh vàng lại biểu trưng cho tinh thần lạc quan, tích cực trong cuộc sống.

Hoa vạn thọ

Bên cạnh đó, loài hoa này còn biểu hiện cho sự tiếc thương và để tưởng niệm người đã khuất. Vì lẽ đó, hoa vạn thọ được nhiều người sử dụng để trang trí trên bàn thờ gia tiên trong dịp Tết cổ truyền.

4Tác dụng của hoa cúc vạn thọDùng để trang trí, làm đẹp cho nhà cửa, đường phố

Vốn là loài hoa dễ trồng và lâu tàn nên hoa vạn thọ thường được trồng khắp các đường phố, công viên, vỉa hè,.. đặc biệt là vào dịp Tết cổ truyền của dân tộc.

Hoa vạn thọ trang trí nhà cửa

Sắc vàng của hoa vạn thọ không chỉ giúp cảnh quan thêm đẹp, thêm ấm áp, mà còn tượng trưng cho may mắn, phú quý nữa đấy.

Dùng trong sản xuất nước hoa, hương thuốc lá

Dầu hoa cúc vạn thọ được xem là nguồn nguyên liệu quý trong ngành công nghiệp sản xuất tinh dầu. Dầu hoa cúc vạn thọ được dùng để tạo hương vị cho thuốc lá, lương thực - thực phẩm, hoặc còn được dùng trong sản xuất nước hoa nữa đấy.

Dầu hoa cúc vạn thọ dùng trong nước hoa

Dùng để chữa bệnh, xua đuổi côn trùng

Có thể bạn chưa biết nhưng hoa vạn thọ còn có công dụng chữa một số bệnh như đau dạ dày, đau bụng, tiêu chảy, giúp mát gan, chữa bệnh nấc cụt,…

Hoa vạn thọ giúp xua đuổi côn trùng

Bên cạnh đó, hương thơm đặc trưng vạn thọ còn là nguyên liệu tự nhiên giúp xua đuổi các loại côn trùng nữa nhé!

5Cách trồng và chăm sóc câyCách trồng hoa cúc vạn thọ

Bước 1 Chọn giống thích hợp, hiện nay có 2 giống phổ biến nhất là giống vạn thọ cao và vạn thọ lùn. Nên trồng hoa vạn thọ trong tháng 11 để hoa ra hoa vào dịp Tết.

Bước 2 Chuẩn bị đất để trồng cây với tro trấu đã được làm giảm độ mặn, phân chuồng đã được ủ và xơ dừa được trộn đều với nhau theo tỷ lệ 1:1:1 với độ dày khoảng 8 – 10 cm.

Bước 3 Gieo cạn hạt giống hoa khoảng 0,2 - 0,4 cm và khoảng cách giữa các hạt gieo là 2,5 - 3,5 cm, lấp đất lại. Tưới nước vào sáng sớm và chiều mát để giữ cho đất ẩm. Khi lên cây con thì trồng cây vào chậu.

Cách chăm sóc hoa cúc vạn thọ

Tưới hoa cúc vạn thọ với bánh dầu sẽ khiến hoa phát triển tốt. Nếu hoa có khả năng nở sớm hơn dự định, cần hãm tốc độ nở hoa bằng cách tưới thêm phân urê theo tỷ lệ 10gram/ 10 lít nước để tưới, tưới ngày 2 lần.

Phòng bệnh héo tươi do nấm bằng thuốc Aliette, Rovral, Daconil, Foraxyl phòng trừ các bệnh do nấm gây hại, dùng Starner phòng bệnh do vi khuẩn.

Lưu ý khi trồng, chăm sóc cây

Nên trồng cây ở những nơi thoáng mát, không bị bóng rợp. Theo dõi thường xuyên quá trình sinh trưởng của cây để kịp thời có biện pháp xử lý. Vào giai đoạn hoa bắt đầu ló ngòng, nên liên tục phun thuốc trừ sâu có mùi nặng (Viphenxa, Supracide) pha loãng để xua đuổi bướm.

 

0
3 tháng 8 2019

1434000000 nha bạn

a

=>(n+2)=5 :.n+2

=>5:. n+2

=>n+2 E (1,5)

th1

N+2=1

th2 tựlamf

20 tháng 10 2019

x không có giá trị đúng bởi vì trong bài ghi n ko phải x 

1. Nhận diện tập hợp điểmTập hợp điểm là đường thẳngNếu biểu thức có dạng |z - a - bi| = |z - c - di|∣z−a−bi∣=∣z−c−di∣ thì tập hợp điểm biểu diễn zz là đường thẳng Ax + By + C = 0Ax+By+C=0, chính là trung trực đoạn thẳng ABAB với A(a , b)A(a,b) và B(c, d)B(c,d).Tập hợp điểm là đường tròn+ Nếu biểu thức có dạng |z - a - bi| = r∣z−a−bi∣=r thì tập hợp điểm biểu...
Đọc tiếp

1. Nhận diện tập hợp điểm

  • Tập hợp điểm là đường thẳng

Nếu biểu thức có dạng |z - a - bi| = |z - c - di|zabi=zcdi thì tập hợp điểm biểu diễn zz là đường thẳng Ax + By + C = 0Ax+By+C=0, chính là trung trực đoạn thẳng ABAB với A(a , b)A(a,b) và B(c, d)B(c,d).

  • Tập hợp điểm là đường tròn

+ Nếu biểu thức có dạng |z - a - bi| = rzabi=r thì tập hợp điểm biểu diễn zz là đường tròn (x - a)^2 + (y - b)^2 = r^2(xa)2+(yb)2=r2, hay x^2 + y^2 - 2ax - 2by + c = 0x2+y22ax2by+c=0.

+ Nếu (x - a)^2 + (y - b)^2 \le r^2(xa)2+(yb)2r2 hay |z - a - bi| \le rzabir thì tập hợp điểm biểu diễn zz là hình tròn tâm II, bán kính rr.

+ Nếu r^2 \le (x - a)^2 + (y - b)^2 \le R^2r2(xa)2+(yb)2R2 hay r \le |z - a - bi| \le RrzabiR thì tập hợp điểm biểu diễn zz là hình vành khăn giới hạn bởi hai đường tròn cùng tâm II, bán kính là rr và RR.

  • Tập hợp điểm là parabol

Parabol (P)(P) tâm I\left(-\dfrac b{2a}; -\dfrac{\Delta}{4a}\right)I(2ab;4aΔ) có phương trình dạng y = ax^2 + bx + cy=ax2+bx+c, với c \ne 0c=0.

  • Tập hợp điểm là elip

Nếu biểu thức có dạng |z - a_1 - b_1i|+|z - a_2 - b_2i| = 2aza1b1i+za2b2i=2a thì tập hợp điểm là: 

Đoạn thẳng ABAB nếu 2a = AB2a=AB.

Elip nếu 2a>AB2a>AB, với A(a_1;b_1)A(a1;b1) và B(a_2;b_2)B(a2;b2). Và dạng phương trình elip là \dfrac{x^2}{a^2} + \dfrac{y^2}{b^2} = 1a2x2+b2y2=1, với a>b>0a>b>0.

2. Tổng quát

+ Tập hợp điểm biểu diễn số phức w = f(z)w=f(z) biết điều kiện số phức zz

Rút zz theo ww rồi sử dụng điều kiện của zz tìm tập hợp hợp điểm.

+ Đặc biệt, điều kiện dạng |z| = az=a hay |z + b| = az+b=a thì lấy mô đun hai vế.

1
23 tháng 2 2021

đố ai giải được

Ta có :

1abc = abc x 9

1000 + abc = abc x 9

1000 = abc x 8

abc = 1000 : 8

abc = 125.

Vậy số cần tìm là 125.

19 tháng 12 2019

Tự hỏi, tự trả lời ????

1= f\left(x\right)f(x) đồng biến trên KK \Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}>0,\forall x_1,x_2\in K⇔x2​−x1​f(x2​)−f(x1​)​>0,∀x1​,x2​∈K (x_1\ne x_2x1​=x2​);    f\left(x\right)f(x) nghịch biến trên KK   ​\Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}< 0,\forall x_1,x_2\in K⇔x2​−x1​f(x2​)−f(x1​)​<0,∀x1​,x2​∈K​ (x_1\ne x_2x1​=x2​).b) Nếu hàm số đồng...
Đọc tiếp

1=

 f\left(x\right)f(x) đồng biến trên KK \Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}>0,\forall x_1,x_2\in Kx2x1f(x2)f(x1)>0,x1,x2K (x_1\ne x_2x1=x2);

    f\left(x\right)f(x) nghịch biến trên KK   ​\Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}< 0,\forall x_1,x_2\in Kx2x1f(x2)f(x1)<0,x1,x2K​ (x_1\ne x_2x1=x2).

b) Nếu hàm số đồng biến trên K thì đồ thị đi lên từ trái sang phải (hình a);

    Nếu hàm số nghịch biến trên K thì đồ thị đi xuống từ trái sang phải (hình b).

         

2) Tính đơn điệu và dấu của đạo hàm

 

Luyện tập

 
 
 

Cho hàm số y=-\dfrac{x^2}{2}y=2x2 với đồ thị như sau. Hàm số có đạo hàm y'=-xy=x

Trên khoảng \left(-\infty;0\right)(;0) đạo hàm mang dấu dươngâm , hàm số nghịch biếnđồng biến.

Trên khoảng \left(0;+\infty\right)(0;+) đạo hàm mang dấu dươngâm, hàm số nghịch biếnđồng biến.

Kiểm tra

 

Định lý: Cho hàm số y=f\left(x\right)y=f(x) có đạo hàm trên K.

a) Nếu f'\left(x\right)>0f(x)>0 với mọi xx thuộc K thì hàm số f\left(x\right)f(x) đồng biến trên K.

b) Nếu f'\left(x\right)< 0f(x)<0 với mọi xx thuộc K thì hàm số nghịch biến trên K.

 

Luyện tập

 
 
 

Xét hàm số y=\sin xy=sinx trên khoảng \left(0;2\pi\right)(0;2π) có đạo hàm và bảng biến thiên như sau:

Hàm số y=\sin xy=sinx đồng biến trên những khoảng nào dưới đây?

\left(0;\dfrac{\pi}{2}\right)(0;2π)
\left(\dfrac{\pi}{2};\dfrac{3\pi}{2}\right)(2π;23π)
\left(\dfrac{3\pi}{2};\pi\right)(23π;π)
\left(0;\dfrac{3\pi}{2}\right)(0;23π)
Kiểm tra

 

Định lý mở rộng: Giả sử hàm số y=f\left(x\right)y=f(x) có đạo hàm trên K. Nếu f'\left(x\right)\ge0f(x)0 (hoặc f'\left(x\right)\le0f(x)0), \forall x\in KxK và f'\left(x\right)=0f(x)=0 chỉ tại một số hữu hạn điểm thì hàm số đồng biến (hoặc nghịch biến) trên K.

Ví dụ: hàm số y=2x^3+6x^2+6x-7y=2x3+6x2+6x7 có đạo hàm y'=6x^2+12x+6=6\left(x+1\right)^2\ge0,\forall x\in\mathbb{R}y=6x2+12x+6=6(x+1)20,xR. Vậy hàm số đồng biến trên \mathbb{R}R.

II. Qui tắc xét tính đơn điệu của hàm số

Qui tắc:

1. Tìm tập xác định

2. Tính đạo f'\left(x\right)f(x). Tìm các điểm x_1,x_2,...,x_nx1,x2,...,xn mà tại đó đạo hàm bằng 0 hoặc không xác định.

3. Sắp xếp các điểm x_1,x_2,...,x_nx1,x2,...,xn theo thứ tự tăng dần và lập bảng biến thiên.

4. Rút ra kết luận về các khoảng đồng biến, nghịch biến của hàm số.

 

Luyện tập

 
 
 

Xét sự đồng biến, nghịch biến của hàm số y=\dfrac{1}{3}x^3-\dfrac{1}{2}x^2-2x+2y=31x321x22x+2.

1) Tập xác định: \mathbb{R}R.

2) y'=x^2-x-2y=x2x2y'=0\Leftrightarrow\left[{}\begin{aligned}x=-1\\x=2\end{aligned}\right.y=0[x=1x=2

3) Bảng biến thiên

    

4) Rút ra kết luận:

 Hàm số nghịch biếnđồng biến trên các khoảng \left(-\infty;-1\right)(;1) và \left(2;+\infty\right)(2;+).

 Hàm số đồng biếnnghịch biến trên khoản \left(-1;2\right)(1;2).

 

0
I. Tính đơn điệu của hàm sốHãy hoàn thành 2 câu hỏi dưới đây để nhớ lại kiến thức cũ đã học:Luyện tập   Cho đồ thị hàm số y=\cos xy=cosx như hình vẽ sau:Hàm số giảm trong khoảng nào dưới đây?(0;\pi)(0;π)(-\dfrac{\pi}{2};0)(−2π​;0)(\pi;\dfrac{3\pi}{2})(π;23π​)(-\dfrac{\pi}{2};\dfrac{\pi}{2})(−2π​;2π​)Kiểm tra1. Định nghĩa:Kí hiệu K là khoảng hoặc đoạn hoặc nửa khoảng. Giả sử...
Đọc tiếp

I. Tính đơn điệu của hàm số

Hãy hoàn thành 2 câu hỏi dưới đây để nhớ lại kiến thức cũ đã học:

Luyện tập

 
 
 

Cho đồ thị hàm số y=\cos xy=cosx như hình vẽ sau:

Hàm số giảm trong khoảng nào dưới đây?

(0;\pi)(0;π)
(-\dfrac{\pi}{2};0)(2π;0)
(\pi;\dfrac{3\pi}{2})(π;23π)
(-\dfrac{\pi}{2};\dfrac{\pi}{2})(2π;2π)
Kiểm tra

1. Định nghĩa:

Kí hiệu K là khoảng hoặc đoạn hoặc nửa khoảng. Giả sử hàm số y=f\left(x\right)y=f(x) xác định trên K. Ta nói

Hàm số y=f\left(x\right)y=f(x) đồng biến (tăng) trên KK nếu với mọi cặp x_1,x_2\in Kx1,x2K mà x_1< x_2x1<x2 thì f\left(x_1\right)< f\left(x_2\right)f(x1)<f(x2);

Hàm số y=f\left(x\right)y=f(x) nghịch biến (giảm) trên KK nếu với mọi cặp  mà x_1,x_2\in Kx1,x2K mà x_1< x_2x1<x2  thì f\left(x_1\right)>f\left(x_2\right)f(x1)>f(x2).

Hàm số đồng biến hoặc nghịch biến trên KK được gọi chung là hàm số đơn điệu trên KK.

Nhận xét: Từ định nghĩa trên ta thấy:

a) f\left(x\right)f(x) đồng biến trên KK \Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}>0,\forall x_1,x_2\in Kx2x1f(x2)f(x1)>0,x1,x2K (x_1\ne x_2x1=x2);

    f\left(x\right)f(x) nghịch biến trên KK   ​\Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}< 0,\forall x_1,x_2\in Kx2x1f(x2)f(x1)<0,x1,x2K​ (x_1\ne x_2x1=x2).

b) Nếu hàm số đồng biến trên K thì đồ thị đi lên từ trái sang phải (hình a);

    Nếu hàm số nghịch biến trên K thì đồ thị đi xuống từ trái sang phải (hình b).

         

2) Tính đơn điệu và dấu của đạo hàm

 

Luyện tập

 
 
 

Cho hàm số y=-\dfrac{x^2}{2}y=2x2 với đồ thị như sau. Hàm số có đạo hàm y'=-xy=x

Trên khoảng \left(-\infty;0\right)(;0) đạo hàm mang dấu dươngâm , hàm số đồng biếnnghịch biến.

Trên khoảng \left(0;+\infty\right)(0;+) đạo hàm mang dấu dươngâm, hàm số đồng biếnnghịch biến.

Kiểm tra

 

Định lý: Cho hàm số y=f\left(x\right)y=f(x) có đạo hàm trên K.

a) Nếu f'\left(x\right)>0f(x)>0 với mọi xx thuộc K thì hàm số f\left(x\right)f(x) đồng biến trên K.

b) Nếu f'\left(x\right)< 0f(x)<0 với mọi xx thuộc K thì hàm số nghịch biến trên K.

 

Luyện tập

 
 
 

Xét hàm số y=\sin xy=sinx trên khoảng \left(0;2\pi\right)(0;2π) có đạo hàm và bảng biến thiên như sau:

Hàm số y=\sin xy=sinx đồng biến trên những khoảng nào dưới đây?

\left(\dfrac{\pi}{2};\dfrac{3\pi}{2}\right)(2π;23π)
\left(0;\dfrac{3\pi}{2}\right)(0;23π)
\left(0;\dfrac{\pi}{2}\right)(0;2π)
\left(\dfrac{3\pi}{2};2\pi\right)(23π;2π)
Kiểm tra

 

Định lý mở rộng: Giả sử hàm số y=f\left(x\right)y=f(x) có đạo hàm trên K. Nếu f'\left(x\right)\ge0f(x)0 (hoặc f'\left(x\right)\le0f(x)0), \forall x\in KxK và f'\left(x\right)=0f(x)=0 chỉ tại một số hữu hạn điểm thì hàm số đồng biến (hoặc nghịch biến) trên K.

Ví dụ: hàm số y=2x^3+6x^2+6x-7y=2x3+6x2+6x7 có đạo hàm y'=6x^2+12x+6=6\left(x+1\right)^2\ge0,\forall x\in\mathbb{R}y=6x2+12x+6=6(x+1)20,xR. Vậy hàm số đồng biến trên \mathbb{R}R.

II. Qui tắc xét tính đơn điệu của hàm số

Qui tắc:

1. Tìm tập xác định

2. Tính đạo f'\left(x\right)f(x). Tìm các điểm x_1,x_2,...,x_nx1,x2,...,xn mà tại đó đạo hàm bằng 0 hoặc không xác định.

3. Sắp xếp các điểm x_1,x_2,...,x_nx1,x2,...,xn theo thứ tự tăng dần và lập bảng biến thiên.

4. Rút ra kết luận về các khoảng đồng biến, nghịch biến của hàm số.

 

Luyện tập

 
 
 

Xét sự đồng biến, nghịch biến của hàm số y=\dfrac{1}{3}x^3-\dfrac{1}{2}x^2-2x+2y=31x321x22x+2.

1) Tập xác định: \mathbb{R}R.

2) y'=x^2-x-2y=x2x2y'=0\Leftrightarrow\left[{}\begin{aligned}x=-1\\x=2\end{aligned}\right.y=0[x=1x=2

3) Bảng biến thiên

    

4) Rút ra kết luận:

 Hàm số đồng biếnnghịch biến trên các khoảng \left(-\infty;-1\right)(;1) và \left(2;+\infty\right)(2;+).

 Hàm số đồng biếnnghịch biến trên khoản \left(-1;2\right)(1;2).

 

sdddssKiểm tra

I. Tính đơn điệu của hàm số

Hãy hoàn thành 2 câu hỏi dưới đây để nhớ lại kiến thức cũ đã học:

Luyện tập

 
 
 

Cho đồ thị hàm số y=\cos xy=cosx như hình vẽ sau:

Hàm số giảm trong khoảng nào dưới đây?

(0;\pi)(0;π)
(-\dfrac{\pi}{2};0)(2π;0)
(\pi;\dfrac{3\pi}{2})(π;23π)
(-\dfrac{\pi}{2};\dfrac{\pi}{2})(2π;2π)
Kiểm tra

1. Định nghĩa:

Kí hiệu K là khoảng hoặc đoạn hoặc nửa khoảng. Giả sử hàm số y=f\left(x\right)y=f(x) xác định trên K. Ta nói

Hàm số y=f\left(x\right)y=f(x) đồng biến (tăng) trên KK nếu với mọi cặp x_1,x_2\in Kx1,x2K mà x_1< x_2x1<x2 thì f\left(x_1\right)< f\left(x_2\right)f(x1)<f(x2);

Hàm số y=f\left(x\right)y=f(x) nghịch biến (giảm) trên KK nếu với mọi cặp  mà x_1,x_2\in Kx1,x2K mà x_1< x_2x1<x2  thì f\left(x_1\right)>f\left(x_2\right)f(x1)>f(x2).

Hàm số đồng biến hoặc nghịch biến trên KK được gọi chung là hàm số đơn điệu trên KK.

Nhận xét: Từ định nghĩa trên ta thấy:

a) f\left(x\right)f(x) đồng biến trên KK \Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}>0,\forall x_1,x_2\in Kx2x1f(x2)f(x1)>0,x1,x2K (x_1\ne x_2x1=x2);

    f\left(x\right)f(x) nghịch biến trên KK   ​\Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}< 0,\forall x_1,x_2\in Kx2x1f(x2)f(x1)<0,x1,x2K​ (x_1\ne x_2x1=x2).

b) Nếu hàm số đồng biến trên K thì đồ thị đi lên từ trái sang phải (hình a);

    Nếu hàm số nghịch biến trên K thì đồ thị đi xuống từ trái sang phải (hình b).

         

2) Tính đơn điệu và dấu của đạo hàm

 

Luyện tập

 
 
 

Cho hàm số y=-\dfrac{x^2}{2}y=2x2 với đồ thị như sau. Hàm số có đạo hàm y'=-xy=x

Trên khoảng \left(-\infty;0\right)(;0) đạo hàm mang dấu dươngâm , hàm số đồng biếnnghịch biến.

Trên khoảng \left(0;+\infty\right)(0;+) đạo hàm mang dấu dươngâm, hàm số đồng biếnnghịch biến.

Kiểm tra

 

Định lý: Cho hàm số y=f\left(x\right)y=f(x) có đạo hàm trên K.

a) Nếu f'\left(x\right)>0f(x)>0 với mọi xx thuộc K thì hàm số f\left(x\right)f(x) đồng biến trên K.

b) Nếu f'\left(x\right)< 0f(x)<0 với mọi xx thuộc K thì hàm số nghịch biến trên K.

 

Luyện tập

 
 
 

Xét hàm số y=\sin xy=sinx trên khoảng \left(0;2\pi\right)(0;2π) có đạo hàm và bảng biến thiên như sau:

Hàm số y=\sin xy=sinx đồng biến trên những khoảng nào dưới đây?

\left(\dfrac{\pi}{2};\dfrac{3\pi}{2}\right)(2π;23π)
\left(0;\dfrac{3\pi}{2}\right)(0;23π)
\left(0;\dfrac{\pi}{2}\right)(0;2π)
\left(\dfrac{3\pi}{2};2\pi\right)(23π;2π)
Kiểm tra

 

Định lý mở rộng: Giả sử hàm số y=f\left(x\right)y=f(x) có đạo hàm trên K. Nếu f'\left(x\right)\ge0f(x)0 (hoặc f'\left(x\right)\le0f(x)0), \forall x\in KxK và f'\left(x\right)=0f(x)=0 chỉ tại một số hữu hạn điểm thì hàm số đồng biến (hoặc nghịch biến) trên K.

Ví dụ: hàm số y=2x^3+6x^2+6x-7y=2x3+6x2+6x7 có đạo hàm y'=6x^2+12x+6=6\left(x+1\right)^2\ge0,\forall x\in\mathbb{R}y=6x2+12x+6=6(x+1)20,xR. Vậy hàm số đồng biến trên \mathbb{R}R.

II. Qui tắc xét tính đơn điệu của hàm số

Qui tắc:

1. Tìm tập xác định

2. Tính đạo f'\left(x\right)f(x). Tìm các điểm x_1,x_2,...,x_nx1,x2,...,xn mà tại đó đạo hàm bằng 0 hoặc không xác định.

3. Sắp xếp các điểm x_1,x_2,...,x_nx1,x2,...,xn theo thứ tự tăng dần và lập bảng biến thiên.

4. Rút ra kết luận về các khoảng đồng biến, nghịch biến của hàm số.

 

Luyện tập

 
 
 

Xét sự đồng biến, nghịch biến của hàm số y=\dfrac{1}{3}x^3-\dfrac{1}{2}x^2-2x+2y=31x321x22x+2.

1) Tập xác định: \mathbb{R}R.

2) y'=x^2-x-2y=x2x2y'=0\Leftrightarrow\left[{}\begin{aligned}x=-1\\x=2\end{aligned}\right.y=0[x=1x=2

3) Bảng biến thiên

    

4) Rút ra kết luận:

 Hàm số đồng biếnnghịch biến trên các khoảng \left(-\infty;-1\right)(;1) và \left(2;+\infty\right)(2;+).

 Hàm số đồng biếnnghịch biến trên khoản \left(-1;2\right)(1;2).

 

Kiểm tra

 

I. Tính đơn điệu của hàm số

Hãy hoàn thành 2 câu hỏi dưới đây để nhớ lại kiến thức cũ đã học:

Luyện tập

 
 
 

Cho đồ thị hàm số y=\cos xy=cosx như hình vẽ sau:

Hàm số giảm trong khoảng nào dưới đây?

(0;\pi)(0;π)
(-\dfrac{\pi}{2};0)(2π;0)
(\pi;\dfrac{3\pi}{2})(π;23π)
(-\dfrac{\pi}{2};\dfrac{\pi}{2})(2π;2π)
Kiểm tra

1. Định nghĩa:

Kí hiệu K là khoảng hoặc đoạn hoặc nửa khoảng. Giả sử hàm số y=f\left(x\right)y=f(x) xác định trên K. Ta nói

Hàm số y=f\left(x\right)y=f(x) đồng biến (tăng) trên KK nếu với mọi cặp x_1,x_2\in Kx1,x2K mà x_1< x_2x1<x2 thì f\left(x_1\right)< f\left(x_2\right)f(x1)<f(x2);

Hàm số y=f\left(x\right)y=f(x) nghịch biến (giảm) trên KK nếu với mọi cặp  mà x_1,x_2\in Kx1,x2K mà x_1< x_2x1<x2  thì f\left(x_1\right)>f\left(x_2\right)f(x1)>f(x2).

Hàm số đồng biến hoặc nghịch biến trên KK được gọi chung là hàm số đơn điệu trên KK.

Nhận xét: Từ định nghĩa trên ta thấy:

a) f\left(x\right)f(x) đồng biến trên KK \Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}>0,\forall x_1,x_2\in Kx2x1f(x2)f(x1)>0,x1,x2K (x_1\ne x_2x1=x2);

    f\left(x\right)f(x) nghịch biến trên KK   ​\Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}< 0,\forall x_1,x_2\in Kx2x1f(x2)f(x1)<0,x1,x2K​ (x_1\ne x_2x1=x2).

b) Nếu hàm số đồng biến trên K thì đồ thị đi lên từ trái sang phải (hình a);

    Nếu hàm số nghịch biến trên K thì đồ thị đi xuống từ trái sang phải (hình b).

         

2) Tính đơn điệu và dấu của đạo hàm

 

Luyện tập

 
 
 

Cho hàm số y=-\dfrac{x^2}{2}y=2x2 với đồ thị như sau. Hàm số có đạo hàm y'=-xy=x

Trên khoảng \left(-\infty;0\right)(;0) đạo hàm mang dấu dươngâm , hàm số đồng biếnnghịch biến.

Trên khoảng \left(0;+\infty\right)(0;+) đạo hàm mang dấu dươngâm, hàm số đồng biếnnghịch biến.

Kiểm tra

 

Định lý: Cho hàm số y=f\left(x\right)y=f(x) có đạo hàm trên K.

a) Nếu f'\left(x\right)>0f(x)>0 với mọi xx thuộc K thì hàm số f\left(x\right)f(x) đồng biến trên K.

b) Nếu f'\left(x\right)< 0f(x)<0 với mọi xx thuộc K thì hàm số nghịch biến trên K.

 

Luyện tập

 
 
 

Xét hàm số y=\sin xy=sinx trên khoảng \left(0;2\pi\right)(0;2π) có đạo hàm và bảng biến thiên như sau:

Hàm số y=\sin xy=sinx đồng biến trên những khoảng nào dưới đây?

\left(\dfrac{\pi}{2};\dfrac{3\pi}{2}\right)(2π;23π)
\left(0;\dfrac{3\pi}{2}\right)(0;23π)
\left(0;\dfrac{\pi}{2}\right)(0;2π)
\left(\dfrac{3\pi}{2};2\pi\right)(23π;2π)
Kiểm tra

 

Định lý mở rộng: Giả sử hàm số y=f\left(x\right)y=f(x) có đạo hàm trên K. Nếu f'\left(x\right)\ge0f(x)0 (hoặc f'\left(x\right)\le0f(x)0), \forall x\in KxK và f'\left(x\right)=0f(x)=0 chỉ tại một số hữu hạn điểm thì hàm số đồng biến (hoặc nghịch biến) trên K.

Ví dụ: hàm số y=2x^3+6x^2+6x-7y=2x3+6x2+6x7 có đạo hàm y'=6x^2+12x+6=6\left(x+1\right)^2\ge0,\forall x\in\mathbb{R}y=6x2+12x+6=6(x+1)20,xR. Vậy hàm số đồng biến trên \mathbb{R}R.

II. Qui tắc xét tính đơn điệu của hàm số

Qui tắc:

1. Tìm tập xác định

2. Tính đạo f'\left(x\right)f(x). Tìm các điểm x_1,x_2,...,x_nx1,x2,...,xn mà tại đó đạo hàm bằng 0 hoặc không xác định.

3. Sắp xếp các điểm x_1,x_2,...,x_nx1,x2,...,xn theo thứ tự tăng dần và lập bảng biến thiên.

4. Rút ra kết luận về các khoảng đồng biến, nghịch biến của hàm số.

 

Luyện tập

 
 
 

Xét sự đồng biến, nghịch biến của hàm số y=\dfrac{1}{3}x^3-\dfrac{1}{2}x^2-2x+2y=31x321x22x+2.

1) Tập xác định: \mathbb{R}R.

2) y'=x^2-x-2y=x2x2y'=0\Leftrightarrow\left[{}\begin{aligned}x=-1\\x=2\end{aligned}\right.y=0[x=1x=2

3) Bảng biến thiên

    

4) Rút ra kết luận:

 Hàm số đồng biếnnghịch biến trên các khoảng \left(-\infty;-1\right)(;1) và \left(2;+\infty\right)(2;+).

 Hàm số đồng biếnnghịch biến trên khoản \left(-1;2\right)(1;2).

 

Kiểm tra

 

I. Tính đơn điệu của hàm số

Hãy hoàn thành 2 câu hỏi dưới đây để nhớ lại kiến thức cũ đã học:

Luyện tập

 
 
 

Cho đồ thị hàm số y=\cos xy=cosx như hình vẽ sau:

Hàm số giảm trong khoảng nào dưới đây?

(0;\pi)(0;π)
(-\dfrac{\pi}{2};0)(2π;0)
(\pi;\dfrac{3\pi}{2})(π;23π)
(-\dfrac{\pi}{2};\dfrac{\pi}{2})(2π;2π)
Kiểm tra

1. Định nghĩa:

Kí hiệu K là khoảng hoặc đoạn hoặc nửa khoảng. Giả sử hàm số y=f\left(x\right)y=f(x) xác định trên K. Ta nói

Hàm số y=f\left(x\right)y=f(x) đồng biến (tăng) trên KK nếu với mọi cặp x_1,x_2\in Kx1,x2K mà x_1< x_2x1<x2 thì f\left(x_1\right)< f\left(x_2\right)f(x1)<f(x2);

Hàm số y=f\left(x\right)y=f(x) nghịch biến (giảm) trên KK nếu với mọi cặp  mà x_1,x_2\in Kx1,x2K mà x_1< x_2x1<x2  thì f\left(x_1\right)>f\left(x_2\right)f(x1)>f(x2).

Hàm số đồng biến hoặc nghịch biến trên KK được gọi chung là hàm số đơn điệu trên KK.

Nhận xét: Từ định nghĩa trên ta thấy:

a) f\left(x\right)f(x) đồng biến trên KK \Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}>0,\forall x_1,x_2\in Kx2x1f(x2)f(x1)>0,x1,x2K (x_1\ne x_2x1=x2);

    f\left(x\right)f(x) nghịch biến trên KK   ​\Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}< 0,\forall x_1,x_2\in Kx2x1f(x2)f(x1)<0,x1,x2K​ (x_1\ne x_2x1=x2).

b) Nếu hàm số đồng biến trên K thì đồ thị đi lên từ trái sang phải (hình a);

    Nếu hàm số nghịch biến trên K thì đồ thị đi xuống từ trái sang phải (hình b).

         

2) Tính đơn điệu và dấu của đạo hàm

 

Luyện tập

 
 
 

Cho hàm số y=-\dfrac{x^2}{2}y=2x2 với đồ thị như sau. Hàm số có đạo hàm y'=-xy=x

Trên khoảng \left(-\infty;0\right)(;0) đạo hàm mang dấu dươngâm , hàm số đồng biếnnghịch biến.

Trên khoảng \left(0;+\infty\right)(0;+) đạo hàm mang dấu dươngâm, hàm số đồng biếnnghịch biến.

Kiểm tra

 

Định lý: Cho hàm số y=f\left(x\right)y=f(x) có đạo hàm trên K.

a) Nếu f'\left(x\right)>0f(x)>0 với mọi xx thuộc K thì hàm số f\left(x\right)f(x) đồng biến trên K.

b) Nếu f'\left(x\right)< 0f(x)<0 với mọi xx thuộc K thì hàm số nghịch biến trên K.

 

Luyện tập

 
 
 

Xét hàm số y=\sin xy=sinx trên khoảng \left(0;2\pi\right)(0;2π) có đạo hàm và bảng biến thiên như sau:

Hàm số y=\sin xy=sinx đồng biến trên những khoảng nào dưới đây?

\left(\dfrac{\pi}{2};\dfrac{3\pi}{2}\right)(2π;23π)
\left(0;\dfrac{3\pi}{2}\right)(0;23π)
\left(0;\dfrac{\pi}{2}\right)(0;2π)
\left(\dfrac{3\pi}{2};2\pi\right)(23π;2π)
Kiểm tra

 

Định lý mở rộng: Giả sử hàm số y=f\left(x\right)y=f(x) có đạo hàm trên K. Nếu f'\left(x\right)\ge0f(x)0 (hoặc f'\left(x\right)\le0f(x)0), \forall x\in KxK và f'\left(x\right)=0f(x)=0 chỉ tại một số hữu hạn điểm thì hàm số đồng biến (hoặc nghịch biến) trên K.

Ví dụ: hàm số y=2x^3+6x^2+6x-7y=2x3+6x2+6x7 có đạo hàm y'=6x^2+12x+6=6\left(x+1\right)^2\ge0,\forall x\in\mathbb{R}y=6x2+12x+6=6(x+1)20,xR. Vậy hàm số đồng biến trên \mathbb{R}R.

II. Qui tắc xét tính đơn điệu của hàm số

Qui tắc:

1. Tìm tập xác định

2. Tính đạo f'\left(x\right)f(x). Tìm các điểm x_1,x_2,...,x_nx1,x2,...,xn mà tại đó đạo hàm bằng 0 hoặc không xác định.

3. Sắp xếp các điểm x_1,x_2,...,x_nx1,x2,...,xn theo thứ tự tăng dần và lập bảng biến thiên.

4. Rút ra kết luận về các khoảng đồng biến, nghịch biến của hàm số.

 

Luyện tập

 
 
 

Xét sự đồng biến, nghịch biến của hàm số y=\dfrac{1}{3}x^3-\dfrac{1}{2}x^2-2x+2y=31x321x22x+2.

1) Tập xác định: \mathbb{R}R.

2) y'=x^2-x-2y=x2x2y'=0\Leftrightarrow\left[{}\begin{aligned}x=-1\\x=2\end{aligned}\right.y=0[x=1x=2

3) Bảng biến thiên

    

4) Rút ra kết luận:

 Hàm số đồng biếnnghịch biến trên các khoảng \left(-\infty;-1\right)(;1) và \left(2;+\infty\right)(2;+).

 Hàm số đồng biếnnghịch biến trên khoản \left(-1;2\right)(1;2).

 

Kiểm tra

 

I. Tính đơn điệu của hàm số

Hãy hoàn thành 2 câu hỏi dưới đây để nhớ lại kiến thức cũ đã học:

Luyện tập

 
 
 

Cho đồ thị hàm số y=\cos xy=cosx như hình vẽ sau:

Hàm số giảm trong khoảng nào dưới đây?

(0;\pi)(0;π)
(-\dfrac{\pi}{2};0)(2π;0)
(\pi;\dfrac{3\pi}{2})(π;23π)
(-\dfrac{\pi}{2};\dfrac{\pi}{2})(2π;2π)
Kiểm tra

1. Định nghĩa:

Kí hiệu K là khoảng hoặc đoạn hoặc nửa khoảng. Giả sử hàm số y=f\left(x\right)y=f(x) xác định trên K. Ta nói

Hàm số y=f\left(x\right)y=f(x) đồng biến (tăng) trên KK nếu với mọi cặp x_1,x_2\in Kx1,x2K mà x_1< x_2x1<x2 thì f\left(x_1\right)< f\left(x_2\right)f(x1)<f(x2);

Hàm số y=f\left(x\right)y=f(x) nghịch biến (giảm) trên KK nếu với mọi cặp  mà x_1,x_2\in Kx1,x2K mà x_1< x_2x1<x2  thì f\left(x_1\right)>f\left(x_2\right)f(x1)>f(x2).

Hàm số đồng biến hoặc nghịch biến trên KK được gọi chung là hàm số đơn điệu trên KK.

Nhận xét: Từ định nghĩa trên ta thấy:

a) f\left(x\right)f(x) đồng biến trên KK \Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}>0,\forall x_1,x_2\in Kx2x1f(x2)f(x1)>0,x1,x2K (x_1\ne x_2x1=x2);

    f\left(x\right)f(x) nghịch biến trên KK   ​\Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}< 0,\forall x_1,x_2\in Kx2x1f(x2)f(x1)<0,x1,x2K​ (x_1\ne x_2x1=x2).

b) Nếu hàm số đồng biến trên K thì đồ thị đi lên từ trái sang phải (hình a);

    Nếu hàm số nghịch biến trên K thì đồ thị đi xuống từ trái sang phải (hình b).

         

2) Tính đơn điệu và dấu của đạo hàm

 

Luyện tập

 
 
 

Cho hàm số y=-\dfrac{x^2}{2}y=2x2 với đồ thị như sau. Hàm số có đạo hàm y'=-xy=x

Trên khoảng \left(-\infty;0\right)(;0) đạo hàm mang dấu dươngâm , hàm số đồng biếnnghịch biến.

Trên khoảng \left(0;+\infty\right)(0;+) đạo hàm mang dấu dươngâm, hàm số đồng biếnnghịch biến.

Kiểm tra

 

Định lý: Cho hàm số y=f\left(x\right)y=f(x) có đạo hàm trên K.

a) Nếu f'\left(x\right)>0f(x)>0 với mọi xx thuộc K thì hàm số f\left(x\right)f(x) đồng biến trên K.

b) Nếu f'\left(x\right)< 0f(x)<0 với mọi xx thuộc K thì hàm số nghịch biến trên K.

 

Luyện tập

 
 
 

Xét hàm số y=\sin xy=sinx trên khoảng \left(0;2\pi\right)(0;2π) có đạo hàm và bảng biến thiên như sau:

Hàm số y=\sin xy=sinx đồng biến trên những khoảng nào dưới đây?

\left(\dfrac{\pi}{2};\dfrac{3\pi}{2}\right)(2π;23π)
\left(0;\dfrac{3\pi}{2}\right)(0;23π)
\left(0;\dfrac{\pi}{2}\right)(0;2π)
\left(\dfrac{3\pi}{2};2\pi\right)(23π;2π)
Kiểm tra

 

Định lý mở rộng: Giả sử hàm số y=f\left(x\right)y=f(x) có đạo hàm trên K. Nếu f'\left(x\right)\ge0f(x)0 (hoặc f'\left(x\right)\le0f(x)0), \forall x\in KxK và f'\left(x\right)=0f(x)=0 chỉ tại một số hữu hạn điểm thì hàm số đồng biến (hoặc nghịch biến) trên K.

Ví dụ: hàm số y=2x^3+6x^2+6x-7y=2x3+6x2+6x7 có đạo hàm y'=6x^2+12x+6=6\left(x+1\right)^2\ge0,\forall x\in\mathbb{R}y=6x2+12x+6=6(x+1)20,xR. Vậy hàm số đồng biến trên \mathbb{R}R.

II. Qui tắc xét tính đơn điệu của hàm số

Qui tắc:

1. Tìm tập xác định

2. Tính đạo f'\left(x\right)f(x). Tìm các điểm x_1,x_2,...,x_nx1,x2,...,xn mà tại đó đạo hàm bằng 0 hoặc không xác định.

3. Sắp xếp các điểm x_1,x_2,...,x_nx1,x2,...,xn theo thứ tự tăng dần và lập bảng biến thiên.

4. Rút ra kết luận về các khoảng đồng biến, nghịch biến của hàm số.

 

Luyện tập

 
 
 

Xét sự đồng biến, nghịch biến của hàm số y=\dfrac{1}{3}x^3-\dfrac{1}{2}x^2-2x+2y=31x321x22x+2.

1) Tập xác định: \mathbb{R}R.

2) y'=x^2-x-2y=x2x2y'=0\Leftrightarrow\left[{}\begin{aligned}x=-1\\x=2\end{aligned}\right.y=0[x=1x=2

3) Bảng biến thiên

    

4) Rút ra kết luận:

 Hàm số đồng biếnnghịch biến trên các khoảng \left(-\infty;-1\right)(;1) và \left(2;+\infty\right)(2;+).

 Hàm số đồng biếnnghịch biến trên khoản \left(-1;2\right)(1;2).

 

Kiểm tra

 

I. Tính đơn điệu của hàm số

Hãy hoàn thành 2 câu hỏi dưới đây để nhớ lại kiến thức cũ đã học:

Luyện tập

 
 
 

Cho đồ thị hàm số y=\cos xy=cosx như hình vẽ sau:

Hàm số giảm trong khoảng nào dưới đây?

(0;\pi)(0;π)
(-\dfrac{\pi}{2};0)(2π;0)
(\pi;\dfrac{3\pi}{2})(π;23π)
(-\dfrac{\pi}{2};\dfrac{\pi}{2})(2π;2π)
Kiểm tra

1. Định nghĩa:

Kí hiệu K là khoảng hoặc đoạn hoặc nửa khoảng. Giả sử hàm số y=f\left(x\right)y=f(x) xác định trên K. Ta nói

Hàm số y=f\left(x\right)y=f(x) đồng biến (tăng) trên KK nếu với mọi cặp x_1,x_2\in Kx1,x2K mà x_1< x_2x1<x2 thì f\left(x_1\right)< f\left(x_2\right)f(x1)<f(x2);

Hàm số y=f\left(x\right)y=f(x) nghịch biến (giảm) trên KK nếu với mọi cặp  mà x_1,x_2\in Kx1,x2K mà x_1< x_2x1<x2  thì f\left(x_1\right)>f\left(x_2\right)f(x1)>f(x2).

Hàm số đồng biến hoặc nghịch biến trên KK được gọi chung là hàm số đơn điệu trên KK.

Nhận xét: Từ định nghĩa trên ta thấy:

a) f\left(x\right)f(x) đồng biến trên KK \Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}>0,\forall x_1,x_2\in Kx2x1f(x2)f(x1)>0,x1,x2K (x_1\ne x_2x1=x2);

    f\left(x\right)f(x) nghịch biến trên KK   ​\Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}< 0,\forall x_1,x_2\in Kx2x1f(x2)f(x1)<0,x1,x2K​ (x_1\ne x_2x1=x2).

b) Nếu hàm số đồng biến trên K thì đồ thị đi lên từ trái sang phải (hình a);

    Nếu hàm số nghịch biến trên K thì đồ thị đi xuống từ trái sang phải (hình b).

         

2) Tính đơn điệu và dấu của đạo hàm

 

Luyện tập

 
 
 

Cho hàm số y=-\dfrac{x^2}{2}y=2x2 với đồ thị như sau. Hàm số có đạo hàm y'=-xy=x

Trên khoảng \left(-\infty;0\right)(;0) đạo hàm mang dấu dươngâm , hàm số đồng biếnnghịch biến.

Trên khoảng \left(0;+\infty\right)(0;+) đạo hàm mang dấu dươngâm, hàm số đồng biếnnghịch biến.

Kiểm tra

 

Định lý: Cho hàm số y=f\left(x\right)y=f(x) có đạo hàm trên K.

a) Nếu f'\left(x\right)>0f(x)>0 với mọi xx thuộc K thì hàm số f\left(x\right)f(x) đồng biến trên K.

b) Nếu f'\left(x\right)< 0f(x)<0 với mọi xx thuộc K thì hàm số nghịch biến trên K.

 

Luyện tập

 
 
 

Xét hàm số y=\sin xy=sinx trên khoảng \left(0;2\pi\right)(0;2π) có đạo hàm và bảng biến thiên như sau:

Hàm số y=\sin xy=sinx đồng biến trên những khoảng nào dưới đây?

\left(\dfrac{\pi}{2};\dfrac{3\pi}{2}\right)(2π;23π)
\left(0;\dfrac{3\pi}{2}\right)(0;23π)
\left(0;\dfrac{\pi}{2}\right)(0;2π)
\left(\dfrac{3\pi}{2};2\pi\right)(23π;2π)
Kiểm tra

 

Định lý mở rộng: Giả sử hàm số y=f\left(x\right)y=f(x) có đạo hàm trên K. Nếu f'\left(x\right)\ge0f(x)0 (hoặc f'\left(x\right)\le0f(x)0), \forall x\in KxK và f'\left(x\right)=0f(x)=0 chỉ tại một số hữu hạn điểm thì hàm số đồng biến (hoặc nghịch biến) trên K.

Ví dụ: hàm số y=2x^3+6x^2+6x-7y=2x3+6x2+6x7 có đạo hàm y'=6x^2+12x+6=6\left(x+1\right)^2\ge0,\forall x\in\mathbb{R}y=6x2+12x+6=6(x+1)20,xR. Vậy hàm số đồng biến trên \mathbb{R}R.

II. Qui tắc xét tính đơn điệu của hàm số

Qui tắc:

1. Tìm tập xác định

2. Tính đạo f'\left(x\right)f(x). Tìm các điểm x_1,x_2,...,x_nx1,x2,...,xn mà tại đó đạo hàm bằng 0 hoặc không xác định.

3. Sắp xếp các điểm x_1,x_2,...,x_nx1,x2,...,xn theo thứ tự tăng dần và lập bảng biến thiên.

4. Rút ra kết luận về các khoảng đồng biến, nghịch biến của hàm số.

 

Luyện tập

 
 
 

Xét sự đồng biến, nghịch biến của hàm số y=\dfrac{1}{3}x^3-\dfrac{1}{2}x^2-2x+2y=31x321x22x+2.

1) Tập xác định: \mathbb{R}R.

2) y'=x^2-x-2y=x2x2y'=0\Leftrightarrow\left[{}\begin{aligned}x=-1\\x=2\end{aligned}\right.y=0[x=1x=2

3) Bảng biến thiên

    

4) Rút ra kết luận:

 Hàm số đồng biếnnghịch biến trên các khoảng \left(-\infty;-1\right)(;1) và \left(2;+\infty\right)(2;+).

 Hàm số đồng biếnnghịch biến trên khoản \left(-1;2\right)(1;2).

 

Kiểm tra

 

I. Tính đơn điệu của hàm số

Hãy hoàn thành 2 câu hỏi dưới đây để nhớ lại kiến thức cũ đã học:

Luyện tập

 
 
 

Cho đồ thị hàm số y=\cos xy=cosx như hình vẽ sau:

Hàm số giảm trong khoảng nào dưới đây?

(0;\pi)(0;π)
(-\dfrac{\pi}{2};0)(2π;0)
(\pi;\dfrac{3\pi}{2})(π;23π)
(-\dfrac{\pi}{2};\dfrac{\pi}{2})(2π;2π)
Kiểm tra

1. Định nghĩa:

Kí hiệu K là khoảng hoặc đoạn hoặc nửa khoảng. Giả sử hàm số y=f\left(x\right)y=f(x) xác định trên K. Ta nói

Hàm số y=f\left(x\right)y=f(x) đồng biến (tăng) trên KK nếu với mọi cặp x_1,x_2\in Kx1,x2K mà x_1< x_2x1<x2 thì f\left(x_1\right)< f\left(x_2\right)f(x1)<f(x2);

Hàm số y=f\left(x\right)y=f(x) nghịch biến (giảm) trên KK nếu với mọi cặp  mà x_1,x_2\in Kx1,x2K mà x_1< x_2x1<x2  thì f\left(x_1\right)>f\left(x_2\right)f(x1)>f(x2).

Hàm số đồng biến hoặc nghịch biến trên KK được gọi chung là hàm số đơn điệu trên KK.

Nhận xét: Từ định nghĩa trên ta thấy:

a) f\left(x\right)f(x) đồng biến trên KK \Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}>0,\forall x_1,x_2\in Kx2x1f(x2)f(x1)>0,x1,x2K (x_1\ne x_2x1=x2);

    f\left(x\right)f(x) nghịch biến trên KK   ​\Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}< 0,\forall x_1,x_2\in Kx2x1f(x2)f(x1)<0,x1,x2K​ (x_1\ne x_2x1=x2).

b) Nếu hàm số đồng biến trên K thì đồ thị đi lên từ trái sang phải (hình a);

    Nếu hàm số nghịch biến trên K thì đồ thị đi xuống từ trái sang phải (hình b).

         

2) Tính đơn điệu và dấu của đạo hàm

 

Luyện tập

 
 
 

Cho hàm số y=-\dfrac{x^2}{2}y=2x2 với đồ thị như sau. Hàm số có đạo hàm y'=-xy=x

Trên khoảng \left(-\infty;0\right)(;0) đạo hàm mang dấu dươngâm , hàm số đồng biếnnghịch biến.

Trên khoảng \left(0;+\infty\right)(0;+) đạo hàm mang dấu dươngâm, hàm số đồng biếnnghịch biến.

Kiểm tra

 

Định lý: Cho hàm số y=f\left(x\right)y=f(x) có đạo hàm trên K.

a) Nếu f'\left(x\right)>0f(x)>0 với mọi xx thuộc K thì hàm số f\left(x\right)f(x) đồng biến trên K.

b) Nếu f'\left(x\right)< 0f(x)<0 với mọi xx thuộc K thì hàm số nghịch biến trên K.

 

Luyện tập

 
 
 

Xét hàm số y=\sin xy=sinx trên khoảng \left(0;2\pi\right)(0;2π) có đạo hàm và bảng biến thiên như sau:

Hàm số y=\sin xy=sinx đồng biến trên những khoảng nào dưới đây?

\left(\dfrac{\pi}{2};\dfrac{3\pi}{2}\right)(2π;23π)
\left(0;\dfrac{3\pi}{2}\right)(0;23π)
\left(0;\dfrac{\pi}{2}\right)(0;2π)
\left(\dfrac{3\pi}{2};2\pi\right)(23π;2π)
Kiểm tra

 

Định lý mở rộng: Giả sử hàm số y=f\left(x\right)y=f(x) có đạo hàm trên K. Nếu f'\left(x\right)\ge0f(x)0 (hoặc f'\left(x\right)\le0f(x)0), \forall x\in KxK và f'\left(x\right)=0f(x)=0 chỉ tại một số hữu hạn điểm thì hàm số đồng biến (hoặc nghịch biến) trên K.

Ví dụ: hàm số y=2x^3+6x^2+6x-7y=2x3+6x2+6x7 có đạo hàm y'=6x^2+12x+6=6\left(x+1\right)^2\ge0,\forall x\in\mathbb{R}y=6x2+12x+6=6(x+1)20,xR. Vậy hàm số đồng biến trên \mathbb{R}R.

II. Qui tắc xét tính đơn điệu của hàm số

Qui tắc:

1. Tìm tập xác định

2. Tính đạo f'\left(x\right)f(x). Tìm các điểm x_1,x_2,...,x_nx1,x2,...,xn mà tại đó đạo hàm bằng 0 hoặc không xác định.

3. Sắp xếp các điểm x_1,x_2,...,x_nx1,x2,...,xn theo thứ tự tăng dần và lập bảng biến thiên.

4. Rút ra kết luận về các khoảng đồng biến, nghịch biến của hàm số.

 

Luyện tập

 
 
 

Xét sự đồng biến, nghịch biến của hàm số y=\dfrac{1}{3}x^3-\dfrac{1}{2}x^2-2x+2y=31x321x22x+2.

1) Tập xác định: \mathbb{R}R.

2) y'=x^2-x-2y=x2x2y'=0\Leftrightarrow\left[{}\begin{aligned}x=-1\\x=2\end{aligned}\right.y=0[x=1x=2

3) Bảng biến thiên

    

4) Rút ra kết luận:

 Hàm số đồng biếnnghịch biến trên các khoảng \left(-\infty;-1\right)(;1) và \left(2;+\infty\right)(2;+).

 Hàm số đồng biếnnghịch biến trên khoản \left(-1;2\right)(1;2).

 

Kiểm tra

 

4
14 tháng 10 2021

có vẻ ngắn

14 tháng 10 2021

đọc hết thanh xuân

26 tháng 1 2017

Chu vi hình vuông đó là:

8 x 4 = 32 ( cm )

Vì hình chữ nhật có nửa chu vi bằng chu vi hình vuông nên nửa chu vi hình chữ nhật là: 32cm

Chiều rộng hình chữ nhật là:

32 - 20 = 12 (cm)

Đáp số: 12cm

2 tháng 5 2018

batngođây là bài của lớp 5 ma ?????