Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì AE = AB => tam giác EAB cân tại A => \(\widehat{EBA}=\frac{180^0-\widehat{EAB}}{2}\) (1)
Vì AD = AC => tam giác DAC cân tại A => \(\widehat{ADC}=\frac{180^0-\widehat{DAC}}{2}\) (2)
\(\widehat{EAB}=\widehat{DAC}\) ( đối đỉnh ) (3)
Từ (1); (2) ; (3) => \(\widehat{EBA}=\widehat{ADC}\) Mà lại ở ví trí SLT => BE // CD
a) Xét tam giác ABD và EBD có:
BD chung
\(\widehat{B_1}=\widehat{B_2}\)(BD là phân giác \(\widehat{ABC}\))
BA=BE (gt)
=> Tam giác ABD= tam giác EBD (cgc) (đpcm)
Câu 9 cần bs điều kiện $x,y,z\neq 0$
$\frac{x}{3}=\frac{y}{4}\Rightarrow \frac{x}{15}=\frac{y}{20}$
$\frac{y}{5}=\frac{z}{6}\Rightarrow \frac{y}{20}=\frac{z}{24}$
$\Rightarrow \frac{x}{15}=\frac{y}{20}=\frac{z}{24}$ và đặt $=t$ (đk: $t\neq 0$)
$\Rightarrow x=15t; y=20t; z=24t$
Khi đó:
$M=\frac{2.15t+3.20t+4.24t}{3.15t+4.20t+5.24t}=\frac{186t}{245t}=\frac{186}{245}$
Đáp án B.
Câu 10:
Giả sử số $A$ được chia thành 3 phần $a,b,c$ sao cho
$a:b:c=\frac{2}{5}: \frac{3}{4}: \frac{1}{6}$
Đặt $a=\frac{2}{5}t; b=\frac{3}{4}t; c=\frac{1}{6}t$
$A=a+b+c=\frac{2}{5}t+\frac{3}{4}t+\frac{1}{6}t=\frac{79}{60}t$
Có:
$a^2+b^2+c^2=(\frac{2}{5}t)^2+(\frac{3}{4}t)^2+(\frac{1}{6}t)^2=24309$
$t^2=32400$
$t=\pm 180$
$\Rightarrow A=\frac{79}{60}t=\frac{79}{60}\pm 180=\pm 237$
Đáp án D.
Vì \(AK⊥FH;FK=KH\) nên \(AK\)là đường trung trực của \(FH\)
\(\Rightarrow AF=AH\left(TC\right)\)(1)
Vì \(AI⊥HE;IH=IE\) nên \(AI\)là đường trung trực của \(HE\)
\(\Rightarrow AH=AE\)(2)
Từ (1);(2) \(\Rightarrow AF=AE\left(=AH\right)\) (đpcm)