K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2016

Biến đổi :

\(4\sin x+3\cos x=A\left(\sin x+2\cos x\right)+B\left(\cos x-2\sin x\right)=\left(A-2B\right)\sin x+\left(2A+B\right)\cos x\)

Đồng nhất hệ số hai tử số, ta có :

\(\begin{cases}A-2B=4\\2A+B=3\end{cases}\)\(\Leftrightarrow\begin{cases}A=2\\B=-1\end{cases}\)

Khi đó \(f\left(x\right)=\frac{2\left(\left(\sin x+2\cos x\right)\right)-\left(\left(\sin x-2\cos x\right)\right)}{\left(\sin x+2\cos x\right)}=2-\frac{\cos x-2\sin x}{\sin x+2\cos x}\)

Do đó, 

\(F\left(x\right)=\int f\left(x\right)dx=\int\left(2-\frac{\cos x-2\sin x}{\sin x+2\cos x}\right)dx=2\int dx-\int\frac{\left(\cos x-2\sin x\right)dx}{\sin x+2\cos x}=2x-\ln\left|\sin x+2\cos x\right|+C\)

6 tháng 10 2015

ta có \(5^{x^2}\ge1\) với mọi x

mà \(cos^4x+sin^4x=1-2sin^2xcos^2x\le1\) với mọi x

dầu bằng xảy ra khi \(5^{x^2}=1\Rightarrow x^2=0\Rightarrow x=0\)

khi x=0 thì \(cos^4x+sin^4x=1\)

vậy nghiệm của pt x=0

 

19 tháng 4 2016

Phương trình tiếp tuyến tại M0 có dạng: y = k(x – x0) + y0  (*)

Với x0 là hoành độ tiếp điểm;

Với y0 = f(x0) là tung độ tiếp điểm;

Với k = y’(x0) = f’(x0) là hệ số góc của tiếp tuyến.

Để viết được phương trình tiếp tuyến ta phải xác định được x0; y0 và k

a: \(F\left(x\right)=x^4+6x^3+2x^2+x-7\)

\(G\left(x\right)=-4x^4-6x^3+2x^2-x+6\)

b: h(x)=f(x)+g(x)

\(=x^4+6x^3+2x^2+x-7-4x^4-6x^3+2x^2-x+6\)

\(=-3x^4+4x^2-1\)

c: Đặt h(x)=0

\(\Leftrightarrow3x^4-4x^2+1=0\)

\(\Leftrightarrow\left(3x^2-1\right)\left(x^2-1\right)=0\)

hay \(x\in\left\{1;-1;\dfrac{\sqrt{3}}{3};-\dfrac{\sqrt{3}}{3}\right\}\)

9 tháng 10 2015

ta có \(y=\frac{3\left(x+1\right)}{x-2}=3+\frac{9}{x-2}\) để các điểm trên C có tọa độ nguyên thì (x,y) nguyên

suy ra (x-2) là ước của 9

mà \(Ư\left\{9\right\}=\left\{\pm9;\pm3;\pm1\right\}\)

TH1: x-2=-9 suy ra x=-7 suy ra y=3-1=2

th2: x-2=9 suy ra x=11 suy ra y=3+1=4

th3:x-2=-3 suy ra x=-2 suy ra y=3-3=0

th4: x-2=3 suy ra x=5 suy ra y=3+3=6

th5:x-2=1 suy ra x=3 suy ra y=3+9=12

th6: x-2=-1 suy ra x=1 suy ra y=3-9=-6

kết luận....

25 tháng 3 2016

Bài làm:

A) Để biểu thức B là phân số <=> x+5 khác 0 và x khác -5. Vậy với x+5 khác -5 thì biểu thức B là phân số.

B)  Để biểu thức B là số nguyên <=>x+5 khác 0

Ta có: x-2=[(x+5)-7] chia hết cho x+5

=> 7 chia hết cho x + 5 hoặc x+5 thuộc Ư(7)={ -7; -1; 1; 7 }

Ta có bảng:

x +5

-7-11
x-12-6-42

Vậy với x thuộc cá gia trị như -2; -6; -4; 2

C) Với x khác -5 thì B=\(\frac{1}{2}\) <=>\(\frac{x-2}{x+5}\)=\(\frac{1}{2}\) 

Suy ra: 2(x-2)=1(x+5)

            2x-4   = x+5

            2x-x    = 5+4

            x          = 9

 Vậy x=9 thì B=\(\frac{1}{2}\)

26 tháng 3 2016

a,Để B là phân số thì x \(\in\) Z,x khác 5

b,Để B số nguyên thì x -2 chi hết cho x-5

                               \(\Leftrightarrow\) (x-5)+3 chia hết cho x-5

mà x-5 chia hết cho x-5 \(\Rightarrow\) 3 chia hết cho x-5\(\Rightarrow\) x-5 \(\in\)Ư(3)={-3;-1;1;3}

Sau đó thay các giá trị đó vào x ở biểu thức x-5 mà giải

c,Theo bài ra ,ta có:\(\frac{x-2}{x-5}\)=\(\frac{1}{2}\)

\(\Leftrightarrow\) 2(x-2)=1(x-5)

      2x-4=x-5

     2x-x=-5+4

        x=-1

Vậy x=-1 thì B=\(\frac{1}{2}\)

 

8 tháng 2 2018

3 tháng 3 2019

a, Ta có: \(\left|x-\dfrac{2}{7}\right|\ge0\forall x\)

\(\Rightarrow\left|x-\dfrac{2}{7}\right|+0,5\ge0,5\forall x\)

Hay: \(A\ge0,5\forall x\)

=> Min A = 0,5 tại \(\left|x-\dfrac{2}{7}\right|=0\Rightarrow x=\dfrac{2}{7}\)

b, \(B=\left|x-5\right|+\left|x-2\right|=\left|x-5\right|+\left|2-x\right|\ge\left|x-5+2-x\right|\) =3

=> Min B = 3 tại \(\left(x-5\right)\left(2-x\right)>0\)

=)) Làm nốt

c,Tương tự b

=.= hk tốt!!

11 tháng 1 2017

Từ \(f\left(x\right)+f\left(\frac{1}{x}\right)=x^2\); lần lượt thay \(x=2\)\(x=\frac{1}{2}\) vào, ta có:

\(f\left(2\right)+3f\left(\frac{1}{2}\right)=4\)\(f\left(\frac{1}{2}\right)+3f\left(2\right)=\frac{1}{4}\Leftrightarrow3f\left(2\right)+f\left(\frac{1}{2}\right)=\frac{1}{4}\)

Giải hệ phương trình với 2 ẩn \(f\left(2\right)\)\(f\left(\frac{1}{2}\right)\)

Tìm được \(f\left(2\right)=\frac{-13}{32}\)

12 tháng 1 2017

Ta có \(f\left(x\right)+3f\left(\frac{1}{x}\right)=x^2\) (1)

Thay \(x\rightarrow\frac{1}{x}\) được \(f\left(\frac{1}{x}\right)+3f\left(x\right)=\frac{1}{x^2}\)

\(\Leftrightarrow3f\left(\frac{1}{x}\right)+9f\left(x\right)=\frac{3}{x^2}\) (2)

Lấy (2) trừ (1) theo vế : \(8f\left(x\right)=\frac{3}{x^2}-x^2\)

\(\Leftrightarrow f\left(x\right)=\frac{1}{8}\left(\frac{3}{x^2}-x^2\right)\)

Vậy f(2) = -13/32

2 tháng 10 2015

vì đồ thị hàm số đi qua điểm \(A\left(-1;\frac{5}{2}\right)\) nên tọa độ của A thỏa mãn phương trình sau: \(\frac{a+b}{-2}=\frac{5}{2}\Rightarrow a+b=-5\)(*)

ta tính y' có:

\(y'=\frac{\left(2ax-b\right)\left(x-1\right)-\left(ax^2-bx\right)}{\left(x-1\right)^2}=\frac{2ax^2-2ax-bx+b-ax^2+bx}{\left(x-1\right)^2}=\frac{ax^2-2ax+b}{\left(x-1\right)^2}\)

vì hệ số góc của tiếp tuyến tại điểm O(0;0) bằng 3 nên \(y'\left(O\right)=\frac{b}{\left(0-1\right)^2}=-3\Rightarrow b=-3\)

thay b=-3 vào (*) ta tìm được a=-2

vậy a=-2;b=-3