Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6B.
a)\(\sqrt[3]{4-2x}\ge4\Leftrightarrow4-2x\ge64\)
\(\Leftrightarrow2x\le-60\Leftrightarrow x\le-30\)
Vậy...
b) \(\sqrt[3]{-x^3-3x^2+6x-10}< -x-1\)
\(\Leftrightarrow-x^3-3x^2+6x-10< -\left(x+1\right)^3\)
\(\Leftrightarrow-x^3-3x^2+6x-10< -x^3-3x^2-3x-1\)
\(\Leftrightarrow9x< 9\Leftrightarrow x< 1\)
Vậy...
7A.
a) \(\sqrt[3]{2x+1}=3\Leftrightarrow2x+1=27\Leftrightarrow x=13\)
Vậy...
b) \(\sqrt[3]{5+x}-x=5\)
\(\Leftrightarrow5+x=\left(5+x\right)^3\) \(\Leftrightarrow\left[{}\begin{matrix}5+x=0\\\left(5+x\right)^2=1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-4\\x=-6\end{matrix}\right.\)
Vậy...
7B.
a) PT \(\Leftrightarrow2-3x=-8\Leftrightarrow x=\dfrac{10}{3}\)
b) PT \(\Leftrightarrow x-1=\left(x-1\right)^3\)
\(\Leftrightarrow\left(x-1\right)\left[1-\left(x-1\right)^2\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\\left(x-1\right)^2=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=0\\x=2\end{matrix}\right.\)
Vậy...
Đặt `a=\sqrt{7x+9},b=\sqrt{7y+9},c=\sqrt{7z+9}`
`=>a^2+b^2+c^2=7(x+y+z)+27=34`
`=>a^2=34-a^2-b^2<=16`
`=>9<=a^2<=4`
`=>3<=a<=4`
`=>(a-3)(a-4)<=0`
`<=>a^2+12<=7a`
`=>a>=(a^2+12)/7)`
CMTT:`b>=(b^2)/(7)`
`c>=(c^2+12)/(7)`
`=>a+b+c>=(a^2+b^2+c^2+36)/(7)=10`
Dấu "=" `<=>(x,y,z)=(0,0,1)` và các hoán vị
Bài này hơi phức tạp xíu
Đặt `a=\sqrt{7x+9},b=\sqrt{7y+9},c=\sqrt{7z+9}`
`=>a^2+b^2+c^2=7(x+y+z)+27=34`
`=>a^2=34-a^2-b^2<=16`
`=>9<=a^2<=16`
`=>3<=a<=4`
`=>(a-3)(a-4)<=0`
`<=>a^2+12<=7a`
`=>a>=(a^2+12)/7)`
CMTT:`b>=(b^2)/(7)`
`c>=(c^2+12)/(7)`
`=>a+b+c>=(a^2+b^2+c^2+36)/(7)=10`
Dấu "=" `<=>(x,y,z)=(0,0,1)` và các hoán vị
Bài này hơi phức tạp xíu
Bài 8:
a: Ta có: \(E=\left(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}\right):\left(\dfrac{1}{x+1}+\dfrac{x}{x-1}+\dfrac{2}{x^2-1}\right)\)
\(=\dfrac{x^2+2x+1-x^2+2x-1}{\left(x-1\right)\left(x+1\right)}:\dfrac{x-1+x^2+x+2}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{4x}{x^2+2x+1}\)
b: Thay x=3 vào E, ta được:
\(E=\dfrac{4\cdot3}{\left(3+1\right)^2}=\dfrac{12}{4^2}=\dfrac{3}{4}\)
Thay x=-3 vào E, ta được:
\(E=\dfrac{4\cdot\left(-3\right)}{\left(-3+1\right)^2}=\dfrac{-12}{4}=-3\)
\(\sqrt{4x-8}-\sqrt{x-2}=2.\)
ĐK \(x\ge2\)
PT<=> \(2\sqrt{x-2}-\sqrt{x-2}=2\)
<=> \(\sqrt{x-2}=2\)
<=> x-2=4
<=> x=6 (t/m)
Vậ pt có nghiệm x=6
7A
M=\(\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}+\sqrt{y}\right)^2}\) M= \(\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
N = \(\dfrac{3\sqrt{a}-6a+4a-1}{\left(2\sqrt{a}-1\right)^2}\) N= \(\dfrac{-3\sqrt{a}\left(2\sqrt{a}-1\right)+\left(2\sqrt{a}-1\right).\left(2\sqrt{a}+1\right)}{\left(2\sqrt{a}-1\right)^2}\)
N= \(\dfrac{\left(2\sqrt{a}-1\right).\left(1-\sqrt{a}\right)}{\left(2\sqrt{a}-1\right)^2}\) N= \(\dfrac{1-\sqrt{a}}{2\sqrt{a}-1}\)
7B
Q= \(\dfrac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)^2}\) Q= \(\dfrac{\sqrt{xy}}{\sqrt{x}-\sqrt{y}}\)
P= \(\dfrac{\left(\sqrt{a}+2\right)^2}{\sqrt{a}+2}-\dfrac{\left(\sqrt{a}-2\right).\left(\sqrt{a}+2\right)}{\sqrt{a}-2}\)
P= \(\sqrt{a}+2-\sqrt{a}-2\) ; P = 0