Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét hai tam giác vuông: ∆IMN và ∆IKN có:
IN chung
MNI = KNI (do NI là phân giác của ∠MNP)
⇒ ∆IMN = ∆IKN (cạnh huyền - góc nhọn)
b) ∆IKP vuông tại K
IP là cạnh huyền nên IP lớn nhất
IK < IP (1)
Do ∆IMN = ∆IKN (cmt)
⇒ MI = IK (2)
Từ (1) và (2)⇒ MI < IP
c) Xét hai tam giác vuông: ∆IKP và ∆IMQ có:
IM = IK (cmt)
∠PIK = ∠MIQ (đối đỉnh)
∆IKP = ∆IMQ (cạnh góc vuông - góc nhọn kề)
⇒ KP = MQ (hai cạnh tương ứng) (3)
Do ∆IMN = ∆IKN (cmt)
⇒ MN = KN (hai cạnh tương ứng) (4)
Từ (3) và (4) ⇒ KN + KP = MN + MQ
NP = NQ
⇒ ∆NPQ cân tại N
Lại có NI là phân giác của ∠MNP
⇒ NI là phân giác của ∠QNP
⇒ NI cũng là đường cao của ∆NPQ (tính chất tam giác cân)
⇒ ND ⊥ QP
a: Xét ΔNMI vuông tại M và ΔNKI vuông tại K co
NI chung
góc MNI=góc KNI
=>ΔNMI=ΔNKI
b: Xet ΔIMA vuông tại M và ΔIKP vuông tại K có
IM=IK
góc MIA=góc KIP
=>ΔIMA=ΔIKP
=>KI=IM
=>KI<IA
a,Tam giác MNP vuông tại M
=> NP22=MN2+MP2( định lí pytago )
=> 102=62+MP2
=> MP2=100-36=64
=> MP=8cm
Bài 1:
a) Ta có: \(MN^2+MP^2=8^2+15^2=289\)
Mà \(NP^2=17^2=289\)
Nên \(MN^2+MP^2=NP^2\) \(\Rightarrow\Delta MNP\) vuông tại \(M.\)(đpcm)
b) Xét \(\Delta MNI\) và \(\Delta KNI\) có:
\(\widehat{NMI}=\widehat{NKI}=90^0\)
\(NI:\) cạnh chung
\(\widehat{MNI}=\widehat{KNI}\left(g.t\right)\)
\(\Rightarrow\Delta MNI=\Delta KNI\left(đpcm\right)\)
c) Ta có: \(\widehat{NIM}=\widehat{NIK}\left(\Delta MNI=\Delta KNI\right)\)
\(\widehat{MIQ}=\widehat{KIP}\) (đối đỉnh)
\(\Rightarrow\widehat{NIQ}=\widehat{NIP}\left(1\right)\)
Xét \(\Delta NIQ\) và \(\Delta NIP\) có:
\(\widehat{QNI}=\widehat{PNI}\left(g.t\right)\)
\(NI:\) cạnh chung
\(\widehat{NIQ}=\widehat{NIP}\left(1\right)\)
\(\Rightarrow\Delta NIQ=\Delta NIP\left(g.c.g\right)\)
\(\Rightarrow IQ=IP\left(2\right)\)
Xét \(\Delta MIQ\) và \(\Delta KIP\) có:
\(\widehat{IMQ}=\widehat{IKP}=90^0\)
\(\widehat{NIQ}=\widehat{NIP}\left(1\right)\)
\(IQ=IP\left(2\right)\)
\(\Rightarrow\Delta MIQ=\Delta KIP\) (cạnh huyền - góc nhọn)
\(\Rightarrow MQ=KP\left(đpcm\right)\)
Xét tam giác MNI và MPI có
MI là cạnh chung
MN = MP( tam giác MNP cân)
Góc MIN = góc MIP = 90°
=> Tam giác MIN = tam giác MIP( cgv - ch)
IN = IP = 5 cm nên I là trung điểm của NP
b) Tam giác MIN vuông tại I có
NI2 + MI2 = MN2( định lí Pytago)
MI2 + 52 = 142
MI2 + 25 = 196
MI2 = 144
MI=12
c) Xét tam giác PHI và PKI có
MI là cạnh chung
Góc HMI = KMI ( tam giác NMI = PMI )
Góc IHM = IKM = 90°
=》 Tam giác HMI = KMI ( ch - gn)
=》IH=IK