Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác MNCB có MN//CB
nên MNCB là hình thang
Hình thang MNCB có \(\widehat{MBC}=\widehat{NCB}\)
nên MNCB là hình thang cân
b: MNCB là hình thang cân
=>MB=NC và MC=NB
AM+MB=AB
AN+NC=AC
mà MB=NC và AB=AC
nên AM=AN
Xét ΔANB và ΔAMC có
AN=AM
NB=MC
AB=AC
Do đó: ΔANB=ΔAMC
=>\(\widehat{ANB}=\widehat{AMC}=90^0\)
=>BN vuông góc AC
Xét ΔABC có
BN,CM là đường cao
BN cắt CM tại O
Do đó: O là trực tâm của ΔABC
=>AO\(\perp\)BC(1)
ΔABC cân tại A
mà AI là đường trung tuyến
nên AI\(\perp\)BC(2)
Từ (1) và (2) suy ra A,O,I thẳng hàng
Câu 3:
Xét ΔMDC có AB//CD
nên MA/MD=MB/MC(1)
Xét ΔMDK có AI//DK
nên AI/DK=MA/MD(2)
Xét ΔMKC có IB//KC
nên IB/KC=MB/MC(3)
Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK
Vì AI//KC nên AI/KC=NI/NK=NA/NC
Vì IB//DK nên IB/DK=NI/NK
=>AI/KC=IB/DK
mà AI/DK=IB/KC
nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)
=>AI=IB
=>I là trung điểm của AB
AI/DK=BI/KC
mà AI=BI
nên DK=KC
hay K là trung điểm của CD
Theo tính chất: Hai đường chéo của hình bình hành cắt nhau tại trung điểm mỗi đường, ta suy ra I là trung điểm của NQ và MP.
Xét tam giác MQN có I là trung điểm NQ, IE // MN nên IE là đường trung bình tam giác.
Vậy nên IE = MN/2
Tương tự IF là đường trung bình tam giác ANP nên IF = MN/2
Vậy nên IE = IF hay I là trung điểm EF.
Câu 3:
Xét ΔMDC có AB//CD
nên MA/MD=MB/MC(1)
Xét ΔMDK có AI//DK
nên AI/DK=MA/MD(2)
Xét ΔMKC có IB//KC
nên IB/KC=MB/MC(3)
Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK
Vì AI//KC nên AI/KC=NI/NK=NA/NC
Vì IB//DK nên IB/DK=NI/NK
=>AI/KC=IB/DK
mà AI/DK=IB/KC
nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)
=>AI=IB
=>I là trung điểm của AB
AI/DK=BI/KC
mà AI=BI
nên DK=KC
hay K là trung điểm của CD
a: Xét ΔMPQ và ΔNQP có
MQ=NP
\(\widehat{MQP}=\widehat{NPQ}\)
QP chung
Do đó: ΔMPQ=ΔNQP
Suy ra: \(\widehat{IPQ}=\widehat{IQP}\)
=>ΔIQP cân tại I
=>IQ=IP
Ta có: IM+IP=MP
IN+IQ=NQ
mà MP=NQ
và IQ=IP
nên IM=IN
Ta có: \(\widehat{OMN}=\widehat{OQP}\)
\(\widehat{ONM}=\widehat{OPQ}\)
mà \(\widehat{OQP}=\widehat{OPQ}\)
nên \(\widehat{OMN}=\widehat{ONM}\)
hay ΔOMN cân tại O
=>OM=ON
=>O nằm trên đường trung trực của MN(1)
Ta có: IM=IN
nên I nằm trên đường trung trực của MN(2)
Từ (1) và (2) suy ra OI là đường trung trực của MN
b: Ta có: OQ=OP
nên O nằm trên đường trung trực của PQ(3)
Ta có: IQ=IP
nên I nằm trên đường trung trực của PQ(4)
Ta có: KQ=KP
nên K nằm trên đường trung trực của PQ(5)
Từ (3), (4) và (5) suy ra Q,I,K thẳng hàng