Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng định lí Py-ta-go vào tam giác ABC vuông tại A ta có :
AB2 + AC2 = BC2
\(\Rightarrow\)AC2 = BC2 - AB2 = 102 - 62 = 82
\(\Rightarrow\)AC = 8 cm
theo định lí quan hệ giữa cạnh và góc trong tam giác ta có : \(\widehat{ACB}< \widehat{ABC}< \widehat{BAC}\)( vì AB < AC < BC )
b) Xét tam giác DAC và tam giác BAC có :
AB = AD ( gt )
\(\widehat{DAC}=\widehat{BAC}=90^o\)
AC ( cạnh chung )
\(\Rightarrow\)tam giác DAC = tam giác BAC ( c.g.c )
\(\Rightarrow\)DC = BC
\(\Rightarrow\)tam giác DCB cân tại C
c) Xét tam giác BDC có CA và DK là trung tuyến và chúng giao nhau tại M nên M là trọng tâm của tam giác BDC
\(\Rightarrow\)MC = \(\frac{2}{3}\)AC = \(\frac{2}{3}.8=\frac{16}{3}\)cm
d) Nối A với Q.
Vì Q nằm trên đường trung trực của AC nên QA = QC \(\Rightarrow\)tam giác QAC cân tại Q \(\Rightarrow\)\(\widehat{QAC}=\widehat{QCA}\)
Ta có : \(\widehat{ADC}+\widehat{DCA}=90^o\) ; \(\widehat{DAQ}+\widehat{QAC}=90^o\)
\(\Rightarrow\)\(\widehat{DAQ}=\widehat{ADQ}\)\(\Rightarrow\)tam giác DQA cân tại Q \(\Rightarrow\)DQ = DA
Từ đó suy ra : DQ = QC \(\Rightarrow\)BQ là trung tuyến tam giác DBC mà BQ đi qua trọng tâm M
Suy ra : 3 điểm B,M,Q thẳng hàng
áp dụng định lí py-ta-go ta có
AB^2+AC^2=BC
=6^2+AC^2=10^2
12+AC^2=20
SUY RA AC=20-12=8
CĂN BẬC 2 CỦA 8 LÀ 4
SUY RA AC=4
GÓC B <C<A
Đáp án:
a) Xét ΔMIC và ΔNIC ta có:
MI = IN (gt)
∠MIC = ∠NIC = 90 độ (gt)
IC chung
=> ΔMIC = ΔNIC
b, Chỉ đúng khi góc A = 90 độ
c) Xét ΔABM và ΔECM ta có:
BM = MC (gt)
∠BMA = ∠CME (đối đỉnh)
AM = ME (gt)
=> ΔABM = ΔECM => ∠ABM = ∠ECM (góc tướng ứng bằng nhau)
=> AB // EC (do ∠ABM = ∠ECM so le trong)
d) Xét ΔAMI và ΔCMI ta có
MI = IN (gt)
∠AIM = ∠CIN = 90 độ (gt)
AI = IC (gt)
=> ∠MAI = ∠NCI => CK // AE
từ CK // AE và AB // EC => AK = CE (các cặp cạnh // chắn bởi các cặp cạnh //) (1)
Xét ΔAKI và ΔECI ta có
AK = CE (1)
∠KAI = ∠CIE (so le trong)
AI = IC (gt)
=> ΔAKI = ΔECI => ∠AIK = ∠EIC
ta có: ∠AIK + ∠KIN + ∠NIC = 180 độ mà ∠AIK = ∠EIC
=> ∠EIC + ∠KIN + ∠NIC = 180 độ => K, I, E thẳng hàng