Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có ∆ABE = ∆ADF(g.c.g) => AE = AF
b, Ta có: ∆AKF ~ ∆CAF ( F ^ chung và F A K ^ = F C A ^ = 45 0 )
=> A F H F = C F A F => A F 2 = K F . C F
c, S A E F = 93 2 c m 2
d, Ta có: AE.AJ=AF.AJ=AD.FJ
=> A E . A J F J = AD không đổi
a, chứng minh 5 điểm....
tứ giác APFD nội tiếp (vì gFAP=PDF=45 độ) suy ra gAPF=90d (vi goc D=1v) hay FP vuông góc với AE
suy tiếp được tứ giác FPEC nội tiếp (có 2 góc đối đều =1v) (1)
ta dễ dàng chứng minh được tam giác AFP vuông cân để suy ra AFP=45d
xét tg AQP và PCQ có PA=PC, QC=QA (vì BD là trục đx của HV); PQ chung suy ra 2 tg này bằng nhau suy tiếp được PCQ=PAQ=45đ
mà góc AFP cũng bằng 45d suy ra tứ giác QFCP nt(2)
từ 1 và 2 suy ra đpcm
b, ta có Diện tích tam giác AFE=dt(APQ)+dt(QFEB)
dt(QFEB)=dt(BCD)-dt(CQD)-dt(CPD)
gọi O là tâm của HV ABCD
có dt(QFEB)=1/2OC.PD-1/2PB.CO-1/2CO.DF=1/2....
suy ra dpcm
c, tự vẽ