K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2017

Cho mình xin lời giải cho bài này đc k??

Bài 1: Cho tam giác ABC, kẻ AH vuông góc với BC, BH=9cm, HC=16cm, tgC=0,75.Trên AH lấy điểm O sao cho OH=2cma) CM: ABC là tam giác vuôngb) Trên cạnh AB lấy điểm M, trên OB lấy điểm P và trên OC lấy điểm N sao cho AM/AB=OP/OB=ON/OC=2/5. Tính độ dài các cạnh và số đo các góc của tam giác MPNBài 2:Cho tam giác vuông ABC( A=90 độ) Kẻ đường thẳng song song với cạnh BC cắt ccs cạnh AB,AC tại M,N, MB=12cm, NC=9cm, trung...
Đọc tiếp

Bài 1: Cho tam giác ABC, kẻ AH vuông góc với BC, BH=9cm, HC=16cm, tgC=0,75.Trên AH lấy điểm O sao cho OH=2cm

a) CM: ABC là tam giác vuông

b) Trên cạnh AB lấy điểm M, trên OB lấy điểm P và trên OC lấy điểm N sao cho AM/AB=OP/OB=ON/OC=2/5. Tính độ dài các cạnh và số đo các góc của tam giác MPN

Bài 2:Cho tam giác vuông ABC( A=90 độ) Kẻ đường thẳng song song với cạnh BC cắt ccs cạnh AB,AC tại M,N, MB=12cm, NC=9cm, trung điểm của MN và BC là E và F

a) CM: 3 điểm A,E,F thẳng hàng

b) Trung điểm BN là G. Tính độ dài các cạnh và số đo các góc của tam giác EFG

c) CM: Tam giác EFG đồng dạng tam giác ABC

Bài 3: Cho tam giác ABC, A= 90 độ. Từ trung điểm E của cạnh AC kẻ EF vuông góc với BC. Nối AF và BE

a) CM; AF= BE.cos C

b) Biết BC=10cm, sinC=0,6. Tính diện tích tứ giác ABFE

c) AF và BE cắt nhau tại O. Tính SinAOB

Bạn nào giúp mk với ạ huhu cảm ơn nhiều nhiều

1
11 tháng 7 2019

Câu hỏi của Pham Van Hung - Toán lớp 9 - Học toán với OnlineMath

Bạn tham khảo câu 2 tai link này nhé!

5 tháng 1 2020

a, Ta có ∆ABE = ∆ADF(g.c.g) => AE = AF

b, Ta có: ∆AKF ~ ∆CAF ( F ^ chung và  F A K ^ = F C A ^ = 45 0 )

=> A F H F = C F A F =>  A F 2 = K F . C F

c, S A E F = 93 2 c m 2

d, Ta có: AE.AJ=AF.AJ=AD.FJ

=>  A E . A J F J = AD không đổi

a, chứng minh 5 điểm.... 
tứ giác APFD nội tiếp (vì gFAP=PDF=45 độ) suy ra gAPF=90d (vi goc D=1v) hay FP vuông góc với AE 
suy tiếp được tứ giác FPEC nội tiếp (có 2 góc đối đều =1v) (1) 
ta dễ dàng chứng minh được tam giác AFP vuông cân để suy ra AFP=45d 
xét tg AQP và PCQ có PA=PC, QC=QA (vì BD là trục đx của HV); PQ chung suy ra 2 tg này bằng nhau suy tiếp được PCQ=PAQ=45đ 
mà góc AFP cũng bằng 45d suy ra tứ giác QFCP nt(2) 
từ 1 và 2 suy ra đpcm 
b, ta có Diện tích tam giác AFE=dt(APQ)+dt(QFEB) 
dt(QFEB)=dt(BCD)-dt(CQD)-dt(CPD) 
gọi O là tâm của HV ABCD 
có dt(QFEB)=1/2OC.PD-1/2PB.CO-1/2CO.DF=1/2.... 
suy ra dpcm 

c, tự vẽ

12 tháng 3 2021
Cho mik xin hình với