K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
8 tháng 8 2017

3.5 h)

\(\int x\ln \left (\frac{x+1}{1-x}\right)dx=\int x(\ln(x+1)-\ln (1-x))dx=\int x\ln (x+1)dx-\int x\ln (1-x)dx\)

Xét \(\int x\ln (x+1)dx\). Đặt \(\left\{\begin{matrix} u=\ln (x+1)\\ dv=xdx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{dx}{x+1}\\ v=\frac{x^2}{2}\end{matrix}\right.\)

\(\Rightarrow \int x\ln (x+1)dx=\frac{x^2\ln (x+1)}{2}-\frac{1}{2}\int \frac{x^2}{x+1}dx\)

\(=\frac{x^2\ln (x+1)}{2}-\frac{1}{2}\int \left(x-1+\frac{1}{x+1}\right)dx\)

\(=\frac{x^2\ln (x+1)}{2}-\frac{1}{2}\left(\frac{x^2}{2}-x+\ln |x+1|\right)+c\)

Tương tự, \(\int x\ln (1-x)dx=\frac{x^2\ln (1-x)}{2}-\frac{1}{2}\left (\frac{x^2}{2}+x+\ln |1-x|\right)+c\)

Do đó \(\int x\ln\left (\frac{x+1}{1-x}\right)dx=\frac{x^2\ln \left (\frac{x+1}{1-x}\right)}{2}+x-\frac{1}{2}\ln \left (\frac{x+1}{1-x}\right)+c\)

AH
Akai Haruma
Giáo viên
8 tháng 8 2017

3.5 g)

Đặt \(\left\{\begin{matrix} u=\ln^2x\\ dv=\sqrt{x}dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{2\ln x}{x}\\ v=\frac{2\sqrt{x^3}}{3}\end{matrix}\right.\)

\(\Rightarrow \int \sqrt{x}\ln ^2xdx=\frac{2\sqrt{x^3}\ln ^2x}{3}-\frac{4}{3}\int \sqrt{x}\ln xdx\)

Xét \(\int \sqrt{x}\ln xdx\)

Đặt \(\left\{\begin{matrix} m=\ln x\\ dn=\sqrt{x}dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} dm=\frac{dx}{x}\\ n=\frac{2\sqrt{x^3}}{3}\end{matrix}\right.\)

\(\Rightarrow \int \sqrt{x}\ln xdx=\frac{2\ln x.\sqrt{x^3}}{3}-\frac{2}{3}\int \sqrt{x}dx\)

\(=\frac{2\ln x.\sqrt{x^3}}{3}-\frac{4\sqrt{x^3}}{9}+c\)

Do đó \(\int \sqrt{x}\ln^2xdx=\frac{2\ln ^2x.\sqrt{x^3}}{3}-\frac{8\ln x.\sqrt{x^3}}{9}+\frac{16\sqrt{x^3}}{27}+c\)

AH
Akai Haruma
Giáo viên
16 tháng 4 2021

Cái này bạn hoàn toàn có thể xem ở sách giáo khoa được mà?

NV
31 tháng 7 2020

\(y'=2cos2x+1=0\Leftrightarrow cos2x=-\frac{1}{2}\)

\(\Rightarrow\left[{}\begin{matrix}2x=\frac{2\pi}{3}+k2\pi\\2x=-\frac{2\pi}{3}+k2\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+k\pi\\x=-\frac{\pi}{3}+k\pi\end{matrix}\right.\)

Lập bảng xét dấu cho \(y'\) ta thấy hàm đạt cực đại tại \(x=\frac{\pi}{3}+k\pi\) và đạt cực tiểu tại \(x=-\frac{\pi}{3}+k\pi\)

9 tháng 8 2020

Đg lên ạ

9 tháng 8 2020

Cảm ơn ạ