K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ABCD là hình vuông

=>AB=BC=CD=DA và \(\widehat{DAB}=\widehat{ABC}=\widehat{BCD}=\widehat{ADC}=90^0\) và AC là phân giác của \(\widehat{DAB}\) và DB là phân giác của góc ADC; BD là phân giác của góc ABC

AC là phân giác của góc DAB

=>\(\widehat{CAB}=\dfrac{1}{2}\widehat{DAB}=\dfrac{1}{2}\cdot90^0=45^0\)

AEBF là hình vuông

=>AB là phân giác của \(\widehat{FAE}\) và \(\widehat{FAE}=90^0\) 

=>\(\widehat{BAE}=\dfrac{1}{2}\cdot\widehat{EAF}=45^0\)

\(\widehat{BAE}=45^0\)

\(\widehat{BAC}=45^0\)

Do đó: \(\widehat{BAE}=\widehat{BAC}=45^0\)

=>AE và AC là hai tia trùng nhau

=>A,E,C thẳng hàng

BD là phân giác của góc ABC

=>\(\widehat{ABD}=\dfrac{\widehat{ABC}}{2}=\dfrac{90^0}{2}=45^0\)

AEBF là hình vuông

=>BA là phân giác của góc EBF

=>\(\widehat{ABE}=\dfrac{1}{2}\cdot\widehat{FBE}=45^0\)

=>\(\widehat{ABE}=\widehat{ABD}\)

=>BE,BD là hai tia trùng nhau

=>B,E,D thẳng hàng

B,E,D thẳng hàng

A,E,C thẳng hàng

Do đó: BD cắt AC tại E

ADCB là hình vuông

=>AC=BD và AC vuông góc với BD tại trung điểm của mỗi đường

=>AC vuông góc BD tại E và E là trung điểm chung của AC và DB

E là trung điểm của AC nên AC=2AE=2(cm)

E là trung điểm của BD nên BD=2EB=2(cm)

Xét tứ giác ADCB có DB\(\perp\)AC

nên \(S_{ADCB}=\dfrac{1}{2}\cdot DB\cdot AC=\dfrac{1}{2}\cdot2\cdot2=2\left(cm^2\right)\)

b: ADCB là hình vuông

=>\(S_{ADCB}=AB^2\)

=>\(AB^2=2\)

=>\(AB=\sqrt{2}\left(cm\right)\)

HQ
Hà Quang Minh
Giáo viên
16 tháng 9 2023

a) Ta có: \({S_{ABCD}} = 4.{S_{AEB}}\) = 4. \(\frac{1}{2}.1.1\) = 2 (m2)

b) AB = \(\sqrt {S{}_{ABCD}}  = \sqrt 2 \) (m)

a: AC=DB=2m

S ABCD=1/2*2*2=2m2

b: AB=căn 1^2+1^2=căn 2(m)

19 tháng 3 2017

17 tháng 6 2019

25 tháng 6 2021

Bài 1 :  A B C D 4

Vì ABCD là hình vuông \(\Rightarrow\widehat{DAB}=\widehat{ABC}=\widehat{BCD}=\widehat{CDA}=90^0\)

\(\Rightarrow AB=BC=CD=AD=4\)cm 

Áp dụng định lí pytago tam giác ADC vuông tại D ta có : 

\(AC^2=AD^2+CD^2=16+16=32\Rightarrow AC=4\sqrt{2}\)cm 

Vì ABCD là hình vuông nên 2 đường chéo bằng nhau AC = BD = 4\(\sqrt{2}\)cm 

25 tháng 6 2021

Bài 2 : 

A B C D 3 căn27

Vì ABCD là hình chữ nhật nên \(AB=CD;AD=BC\)

Áp dụng định lí Pytago tam giác ACD vuông tại D ta có :

 \(AC^2=AD^2+DC^2=27+9=36\Rightarrow AC=6\)cm 

25 tháng 4 2017

19 tháng 7 2019

O D A B C 1 2 1

Ta có: AD = BC = 3 (cm)  (tính chất hình thang cân)

ˆABD=ˆBDC (so le trong)

ˆADB=ˆBDC(gt)

⇒ˆABD=ˆADB

⇒ ∆ ABD cân tại A

⇒ AB = AD = 3 (cm)

∆ BDC vuông tại B

⇒ˆBDC+ˆC=90độ ⇒BDC^+C^=90độ 

ˆADC=ˆCADC^=C^ (gt)

Mà ˆBDC=12ˆADC nên  ˆBDC=12ˆCBD 

 C^+12C^=90độ ⇒C^=60độ

Từ B kẻ đường thẳng song song AD cắt CD tại E.

Hình thang ABED có hai cạnh bên song song nên AB = DE và AD = BE

⇒ DE = 3 (cm), BE = 3 (cm)

ˆBEC=ˆADC  (đồng vị )

Suy ra:  ˆBEC=ˆCBE

⇒ ∆ BEC cân tại B có C^=60 độ

⇒ ∆ BEC đều

⇒ EC = BC = 3 (cm)

CD = CE + ED = 3 + 3 = 6 (cm)