Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét tam giác NPA và tam giác CBP có
AP=PB ; goc APN= goc CPB ; goc PAN = goc PBC (ND//BC)
==> tam giác APN = tam giác BPC ( g.c.g)
b. vì ÁP//DC ==> tam giác NPA đồng dạng với NCD
mà tam giác NPA đồng dạng với tam giác CPB
==> tam giác CPB đồng dạng với tam giác NCD
a: ΔPBC đồng dạng với ΔCDN
=>CD*BC=BP*DN
=>BP*DN=AB^2
b: AB^2=BP*DN
=>BD/BP=DN/DB
Xét ΔBND và ΔBPD có
góc BDN=góc PBD
DN/DB=BD/BP
=>ΔBND đồng dạng với ΔPDB
=>góc BND=góc BDP
góc BMD=góc BND+góc MDN
=>góc BMD=góc BDM+góc MDN=góc BDA=60 độ
a) Ta có: AB = AD = CD/2 và M là trung điểm của CD (gt)
⇔ AB = DM và AB // DM
Do đó tứ giác ABMD là hình bình hành có AB = AD. Vậy ABMD là hình thoi.
b) M là trung điểm của CD nên BM là trung tuyến của ΔBDC mà MB = MD = MC. Do đó ΔBDC là tam giác vuông tại B hay DB ⊥ BC
c) ABMD là hình thoi (cmt) ⇔ ∠D1 = ∠D2
Do đó hai tam giác vuông AHD và CBD đồng dạng (g.g)
d) Ta có :
Xét tam giác vuông AHB, ta có :
Dễ thấy tứ giác ABCM là hình bình hành (AB // CM và AB = CM)
⇒ BC = AM = 3 (cm)
Ta có:
M là trung điểm của DC nên
SBMD = SBMC = SBCD/2 = 3 (cm2) (chung đường cao kẻ từ B và MD = MC)
Mặt khác ΔABD = ΔMDB (ABCD là hình thoi)
⇔ SABD = SBMD = 3 (cm2)
Vậy SABCD = SABD + SBMD + SBMC = 9 (cm2)
a: Xét ΔPBC và ΔPAN có
góc PBC=góc PAN
BP=AP
góc BPC=góc APN
=>ΔPBC=ΔPAN
=>PN=PC
=>P là trung điểm của CN
b: Xét ΔDNC và ΔBCP có
góc NDC=góc PBC
góc DNC=góc PCB
=>ΔDNC đồng dạng vói ΔBCP