Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}\widehat{DAB}=\widehat{ABC}\left(hthang.cân\right)\\AD=BC\left(hthang.cân\right)\\AB.chung\end{matrix}\right.\Rightarrow\Delta ADB=\Delta BCA\left(c.g.c\right)\\ \Rightarrow\widehat{ADB}=\widehat{ACB}\Rightarrow\widehat{ADC}-\widehat{ADB}=\widehat{BCD}-\widehat{ACB}\\ \Rightarrow\widehat{OCD}=\widehat{ODC}\\ \Rightarrow\Delta COD.cân.tại.O\\ Mà.\widehat{COD}=\widehat{AOB}=60^0\Rightarrow\Delta COD.đều\)
Mà DF là trung tuyến nên cũng là đường cao
Do đó \(DF\perp AC\)
\(\Delta DFA\) có FM là trung tuyến ứng với cạnh huyền nên \(FM=\dfrac{1}{2}AD\left(1\right)\)
Cmtt \(\Rightarrow\Delta OAB.đều\Rightarrow AE\perp BD\Rightarrow EM=\dfrac{1}{2}AD\left(2\right)\)
\(\left\{{}\begin{matrix}OE=EB\\OF=FC\end{matrix}\right.\Rightarrow EF\) là đtb tam giác OBC \(\Rightarrow EF=\dfrac{1}{2}BC=\dfrac{1}{2}AD\left(hthang.cân\right)\left(3\right)\)
\(\left(1\right)\left(2\right)\left(3\right)\Rightarrow FM=EM=EF\Rightarrow\Delta MEF.đều\)
⎧⎪ ⎪⎨⎪ ⎪⎩ˆDAB=ˆABC(hthang.cân)AD=BC(hthang.cân)AB.chung⇒ΔADB=ΔBCA(c.g.c)⇒ˆADB=ˆACB⇒ˆADC−ˆADB=ˆBCD−ˆACB⇒ˆOCD=ˆODC⇒ΔCOD.cân.tại.OMà.ˆCOD=ˆAOB=600⇒ΔCOD.đều{DAB^=ABC^(hthang.cân)AD=BC(hthang.cân)AB.chung⇒ΔADB=ΔBCA(c.g.c)⇒ADB^=ACB^⇒ADC^−ADB^=BCD^−ACB^⇒OCD^=ODC^⇒ΔCOD.cân.tại.OMà.COD^=AOB^=600⇒ΔCOD.đều
Mà DF là trung tuyến nên cũng là đường cao
Do đó DF⊥ACDF⊥AC
ΔDFAΔDFA có FM là trung tuyến ứng với cạnh huyền nên FM=12AD(1)FM=12AD(1)
Cmtt ⇒ΔOAB.đều⇒AE⊥BD⇒EM=12AD(2)⇒ΔOAB.đều⇒AE⊥BD⇒EM=12AD(2)
{OE=EBOF=FC⇒EF{OE=EBOF=FC⇒EF là đtb tam giác OBC ⇒EF=12BC=12AD(hthang.cân)(3)⇒EF=12BC=12AD(hthang.cân)(3)
(1)(2)(3)⇒FM=EM=EF⇒ΔMEF.đều
Trả lời
Xét tam giác OAD ta có: OE=AE; OE=FD \(\Rightarrow\)EF là ĐTB của tam giác OAD
\(\Rightarrow EF=\frac{1}{2}AD=\frac{1}{2}BC\left(1\right)\)và EF//AD
Ta có tam giác ABCD là tâm giác cân \(\Rightarrow\widehat{OCD}\)\(=\widehat{ODC}\)=\(60^0\)(tự lập luận)
Ta có: Tam giác ODC đều có CF là đường trung tuyến đồng thời là đường cao
\(\Rightarrow CF\perp BD\)
Tam giác BFC vuông tại F có FG là đường trung tuyến
\(\Rightarrow FG=CG=BG=\frac{BC}{2}\)(Theo t/c đường trung tuyến trong \(\Delta\)vuông)(2)
Chứng minh tường tự: EG=\(\frac{BC}{2}\left(3\right)\)
\(\left(1\right)\left(2\right)\left(3\right)\Rightarrow FG=EF=EG\Rightarrow\Delta EFG\)là tam giác đều
Xét ΔOAD có OE/OA=OF/OD
nên EF//AD và EF=AD/2=BC/2
Xét ΔADC và ΔBCD có
AD=BC
DC chung
AC=BD
DO đó: ΔADC=ΔBCD
=>góc ODC=góc OCD=60 đọ
=>ΔODC đều
mà CF là trung tuyến
nên CF vuông góc với BD
ΔBFC vuông tại F
mà FG là trung tuyến
nên FG=BC/2
Xét ΔOAB có góc OBA=góc OAB và góc AOB=60 độ
nên ΔOAB đều
mà BE là trung tuyến
nên BE vuông góc với CE
ΔBEC vuông tại E
mà EG là trung tuyến
nên EG=BC/2
=>EG=EF=FG
=>ΔEFG đều
Xét ΔOAD có OE/OA=OF/OD
nên EF//AD và EF=AD/2=BC/2
Xét ΔADC và ΔBCD có
AD=BC
DC chung
AC=BD
DO đó: ΔADC=ΔBCD
=>góc ODC=góc OCD=60 đọ
=>ΔODC đều
mà CF là trung tuyến
nên CF vuông góc với BD
ΔBFC vuông tại F
mà FG là trung tuyến
nên FG=BC/2
Xét ΔOAB có góc OBA=góc OAB và góc AOB=60 độ
nên ΔOAB đều
mà BE là trung tuyến
nên BE vuông góc với CE
ΔBEC vuông tại E
mà EG là trung tuyến
nên EG=BC/2
=>EG=EF=FG
=>ΔEFG đều
Xét ΔOAD có OE/OA=OF/OD
nên EF//AD và EF=AD/2=BC/2
Xét ΔADC và ΔBCD có
AD=BC
DC chung
AC=BD
DO đó: ΔADC=ΔBCD
=>góc ODC=góc OCD=60 đọ
=>ΔODC đều
mà CF là trung tuyến
nên CF vuông góc với BD
ΔBFC vuông tại F
mà FG là trung tuyến
nên FG=BC/2
Xét ΔOAB có góc OBA=góc OAB và góc AOB=60 độ
nên ΔOAB đều
mà BE là trung tuyến
nên BE vuông góc với CE
ΔBEC vuông tại E
mà EG là trung tuyến
nên EG=BC/2
=>EG=EF=FG
=>ΔEFG đều