Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBDC vuông tại B và ΔHBC vuông tại H có
góc C chung
Do đo: ΔBDC\(\sim\)ΔHBC
b: \(BD=\sqrt{10^2-6^2}=8\left(cm\right)\)
\(HC=\dfrac{BC^2}{CD}=\dfrac{6^2}{10}=3.6\left(cm\right)\)
HD=10-3,6=6,4(cm)
Xét hình thang ABCD có các đường cao AH và BK. Từ A kẻ đường thẳng song song với BD cắt CD ở E Þ AB = ED.
Chứng minh A C H ^ = 45 0 . Do DEAC vuông cân ở A nên A H = C H = E H = A B + C D 2
BD^2 = CD^2 - BC^2 = 25^2 - 15^2 = 400 => BD = 20
BH.CD = BD.BC ( = 2 S(BCD))
=> BH = BD.BC/CD = 20.15/25 = 12
CH^2 = BC^2 - BH^2 = 15^2 - 12^2 = 81 => CH = 9
AB = CD - 2.CH = 25 -2.9 = 7
=> S(ABCD) = (AB + CD).BH/2 = (7 + 25).12/2 = 192 cm^2