K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2016

hình thang ABCD 

=> AD=BC = 3cm ( định lí 1 )

AB//CD ( ABCD là hình thang cân )

=> góc B1 = góc D2 ( SLT )

     góc D1 = góc D2 ( gt )

=> góc B1 = góc D1 

=> tg ABD cân tại A

=> AD=AB= 3cm

tg DBC vuông ở B

hình thang cân ABCD 

=> góc D = góc C

   2 lần góc D1  = góc C

=> góc DBC = góc D1 + 2 lần góc D1 = 90 độ

                                       3 lần góc D1 = 90 độ

=>                                            góc D1 = 900 : 3 

                                                             = 300

=> góc C = 900 - góc D1 = 900 - 300 = 600

Gọi DA giao CB tại O

tg ODC có DB là pgiác 

BD vuông góc với Oc

=> tg ODC cân ở D

lại có góc C = 60 độ

=> tg OCD đều

=> CD = CO

mà tg ODC đều nên DB là đường phân giác đồng thời là đường trung tuyến

=> OB= BC

     CD= CO = OB+BC

mà OB = BC ( cmt )

=> CĐ= CƠ = 2CB = 2.3 = 6 ( cm )

Chu vi của hình thang cân ABCD là

AB+BC+AD+CD = 3+3+3+6= 15 (cm )

11 tháng 10 2021

hình thang ABCD 

=> AD=BC = 3cm ( định lí 1 )

AB//CD ( ABCD là hình thang cân )

=> góc B1 = góc D2 ( SLT )

     góc D1 = góc D2 ( gt )

=> góc B1 = góc D1 

=> tg ABD cân tại A

=> AD=AB= 3cm

tg DBC vuông ở B

hình thang cân ABCD 

=> góc D = góc C

   2 lần góc D1  = góc C

=> góc DBC = góc D1 + 2 lần góc D1 = 90 độ

                                       3 lần góc D1 = 90 độ

=>                                            góc D1 = 900 : 3 

                                                             = 300

=> góc C = 900 - góc D1 = 900 - 300 = 600

Gọi DA giao CB tại O

tg ODC có DB là pgiác 

BD vuông góc với Oc

=> tg ODC cân ở D

lại có góc C = 60 độ

=> tg OCD đều

=> CD = CO

mà tg ODC đều nên DB là đường phân giác đồng thời là đường trung tuyến

=> OB= BC

     CD= CO = OB+BC

mà OB = BC ( cmt )

=> CĐ= CƠ = 2CB = 2.3 = 6 ( cm )

Chu vi của hình thang cân ABCD là

AB+BC+AD+CD = 3+3+3+6= 15 (cm )

29 tháng 6 2017

Hình thang cân

20 tháng 9 2016

 hình thang ABCD 

=> AD=BC = 3cm ( định lí 1 )

AB//CD ( ABCD là hình thang cân )

=> góc B1 = góc D2 ( SLT )

     góc D1 = góc D2 ( gt )

=> góc B1 = góc D1 

=> tg ABD cân tại A

=> AD=AB= 3cm

tg DBC vuông ở B

hình thang cân ABCD 

=> góc D = góc C

   2 lần góc D1  = góc C

=> góc DBC = góc D1 + 2 lần góc D1 = 90 độ

                                       3 lần góc D1 = 90 độ

=>                                            góc D1 = 900 : 3 

                                                             = 300

=> góc C = 900 - góc D1 = 900 - 300 = 600

Gọi DA giao CB tại O

tg ODC có DB là pgiác 

BD vuông góc với Oc

=> tg ODC cân ở D

lại có góc C = 60 độ

=> tg OCD đều

=> CD = CO

mà tg ODC đều nên DB là đường phân giác đồng thời là đường trung tuyến

=> OB= BC

     CD= CO = OB+BC

mà OB = BC ( cmt )

=> CĐ= CƠ = 2CB = 2.3 = 6 ( cm )

Chu vi của hình thang cân ABCD là

AB+BC+AD+CD = 3+3+3+6= 15 (cm )

Bài 1:

 

loading...

Ta có: AD=BC=3cm (t/c hthang)

Vì AB//CD(gt) nên \(\widehat{ABD}=\widehat{BDC}\left(SLT\right)\)

Mà \(\widehat{ADC}=\widehat{BDC}\) (do BD là tia pgiac góc D)

=>∠ABD=∠BDC 

=>∆ABD cân tại A

=>AD=BC=3cm

Vì ∆DBC vuông tại B

nên ∠BDC+∠C=90o

Mà ∠ADC=∠C (do ABCD là hình thang cân)

và ∠BDC=1/2 ∠ADC

=> ∠BCD=1/2∠C

Khi đó: ∠C+1/2∠C=90o=>∠C=60o

- Kẻ từ B 1 đường thẳng // AD cắt CD tại E

Hình thang ABED có hai cạnh bên song song nên AB = DE và AD = BE

⇒ DE = 3 (cm), BE = 3 (cm)

Mà ∠BEC=∠ADC(đồng vị)

=>∠BEC=∠C

=>∆BEC cân tại B có ∠C=60o

=>∆BEC là ∆ cả cân cả đều

=> EC=BC=3cm

Ta có: CD = CE + ED = 3 + 3 = 6(cm)

Chu vi hình thang ABCD bằng:

AB + BC + CD + DA = 3 + 3 + 6 + 3 = 15 (cm)

Bài 2:

loading...

Ta có: ∆ABC là ∆ cân tại A(gt)

=>∠ABC=∠ACB

+Ta có BD là tia pgiac của ∠ABC

=>∠B1=∠B2=1/2∠ABC

+Ta có CE là tia pgiac ∠ACB

=>C1=C2=1/2∠ACB

Xét 

AEC và ΔADB có:

+∠A chung

+AB=AC

+C1=B1

=> ΔAEC = ΔADB

=> AE = AD

=>BCDE là hình thang cân

b) Ta có ∠ACB=∠ABC=50o(do BCDE là hình thang cân)

Ta có: ED//BC

\(\Rightarrow\left\{{}\begin{matrix}\widehat{ABC}=\widehat{AED}\\\widehat{ACB}=\widehat{ADE}\end{matrix}\right.=50^o}\) (SLT)

Mà ∠DEB=∠EDC

Ta có:

+∠DEB+∠AED=180o (kề bù)

=>50o+∠AED=180o

=>∠AED=180o-50o=130o

=>∠AED=∠ADE=130o