Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABD và ΔBAC có
BA chung
AD=BC
BD=AC
=>ΔABD=ΔBAC
=>góc JAB=góc JBA
=>JA=JB
Xét ΔICD có AB//CD
nên IA/AD=IB/BC
mà AD=BC
nên IA=IB
mà JA=JB
nên IJ là trung trực của AB
A B C D O
1. Xét \(\Delta ABD\) và \(\Delta BAC\) có:
AB chung
AD = BC ( theo tính chất của hình thang cân)
BD = AC ( theo t/c của hình thang cân )
=> \(\Delta ABD=\Delta BAC\left(c.c.c\right)\)
=> Góc DBA = CAB
=> Tam giác OAB cân tại O
Vậy OA=OB
1.
O A B D C E
+) Tứ giác ABCD kà hình thang cân => góc ADC = BCD và AD = BC
=> tam giác ODC cân tại O => OD = OC
mà AD = BC => OA = OB
+) tam giác ODB và OCA có: OD = OC; góc DOC chung ; OB = OA
=> Tam giác ODB = OCA (c - g - c)
=> góc ODB = OCA mà góc ODC = OCD => góc ODC - ODB = OCD - OCA
=> góc EDC = ECD => tam giác EDC cân tại E => ED = EC (2)
Từ (1)(2) => OE là đường trung trực của CD
=> OE vuông góc CD mà CD // AB => OE vuông góc với AB
Tam giác OAB cân tại O có OE là đường cao nên đồng thời là đường trung trực
vậy OE là đường trung trực của AB
Gọi O là giao điểm của AB và IJ.
Vì ABCD là hình thang cân nên \(\widehat {BA{\rm{D}}} = \widehat {ABC};\widehat {A{\rm{D}}C} = \widehat {BC{\rm{D}}};A{\rm{D}} = BC, AC = BD\)
Tam giác ICD cân tại I (vì \(\widehat {A{\rm{D}}C} = \widehat {BC{\rm{D}}}\)) nên IC = ID.
Xét tam giác ABD và BAC có:
AB chung
AD = BC (cmt)
AC = BD (cmt)
=> ∆ABD = ∆BAC (c.c.c) => \(\widehat {A{\rm{D}}B} = \widehat {BC{\rm{A}}}\)
Vì \(\widehat {A{\rm{D}}C} = \widehat {BC{\rm{D}}};\widehat {A{\rm{D}}B} = \widehat {BC{\rm{A}}}\) nên \(\widehat {J{\rm{D}}C} = \widehat {JC{\rm{D}}}\)
Tam giác JCD cân tại J (vì \(\widehat {J{\rm{D}}C} = \widehat {JC{\rm{D}}}\) ) nên JC = JD.
Xét ∆IJD và ∆IJC có:
IC = ID (chứng minh trên);
\(\widehat {A{\rm{D}}B} = \widehat {BC{\rm{A}}}\);
JC = JD (chứng minh trên).
Do đó ∆IJD = ∆IJC (c.g.c).
Suy ra \(\widehat {D{\rm{IJ}}} = \widehat {C{\rm{IJ}}}\) (hai góc tương ứng).
Ta có ID = IC, AD = BC.
Mà ID = AI + AD; IC = IB + BC nên IA = IB.
Tam giác IAB cân tại I (vì IA = IB) có IO là tia phân giác \(\widehat {AIB}\)
Suy ra IO là đường trung trực của đoạn thẳng AB.
Vậy đường thẳng IJ là đường trung trực của đoạn thẳng AB.