K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2017

a) Kẻ đoạn thẳng AC.
Ta có: AB // CD (ABCD là hình thang)
Xét \(\Delta ABC\)\(\Delta DCA\), có:
\(\widehat{BAC} = \widehat{ACD}\) (hai góc so le trong, AB//CD)

AC là cạnh chung

\(\widehat{DAC} = \widehat{BCA}\) (hai góc so le trong, AD // BC)

Vậy \(\Delta ABC=\Delta CDA\) (g.c.g)
\(\Rightarrow AD=BC;AB=CD\) (ĐPCM)

b) Xét \(\Delta ADC\)\(\Delta CBA\), có:
AB = CD (gt)
\(\widehat{BAC} = \widehat{ACD}\) ((hai góc so le trong, AB//CD)

AC là cạnh chung
\(\Rightarrow\Delta ADC=\Delta CBA\) (c.g.c)

\(\Rightarrow\) \(\widehat{DAC} = \widehat{BCA}\) (hai góc tương ứng), mà 2 góc này ở vị trí so le trong
\(\Rightarrow\) AD // BC

Ta có: \(\Delta ADC=\Delta CBA\) \(\Rightarrow\) AD = BC (hai cạnh tương ứng)
Vậy AD // BC, AD = BC (đpcm)

1 tháng 11 2017

Để học tốt Toán 8 | Giải toán lớp 8

Hình thang ABCD có đáy AB, CD ⇒ AB // CD ⇒ ∠A2 = ∠C1 ̂ (hai góc so le trong)

Lại có: AD // BC ⇒ ∠A1 = ∠C2 (hai góc so le trong)

Xét ΔABC và ΔCDA có:

∠A2 = ∠C1 (cmt)

AC chung

∠A1 = ∠C2 (cmt)

⇒ ΔABC = ΔCDA (g.c.g)

⇒ AD = BC, AB = CD (các cặp cạnh tương ứng)

b)

Để học tốt Toán 8 | Giải toán lớp 8

Xét ΔABC và ΔCDA có:

AC chung

∠A2 = ∠C1 (cmt)

AB = CD

⇒ ΔABC = ΔCDA (c.g.c)

⇒ AD = BC (hai cạnh tương ứng)

∠A1 = ∠C2 (hai góc tương ứng) ⇒ AD // BC (hai góc so le trong bằng nhau)

3 tháng 8 2018

tự vẽ hình

a)  Xét tam giác DAC và tam giác BCA có:

    góc DAC = góc BCA  (slt do AD // BC)

    AC:  chung

    góc DCA = góc BAC (slt do AB // DC)

suy ra: tam giác DAC = tam giác BCA  (g.c.g)

=>  AD = BC; DC = AB

b)  Xét tam giác DAC và tam giác BCA có:

   AD = AB

  góc DCA = góc BAC (slt do AB // CD)

  AC: chung

suy ra: tam giác DAC = tam giác BCA   (c.g.c)

=>  AD = BC

      góc DAC = góc BCA

mà 2 góc này slt

=>  AD // BC

3 tháng 8 2018

tks bạn nha

a) Ta có : AB // CD ( do ABCD là hình thang )

           AD // BC ( gt )

=> ABCD là hình bình hành 

=>  AD = BC ; AB = CD

b) Ta có : AB = CD ( gt )

              AB // CD ( gt )

=> ABCD là hình bình hành 

=> AD // BC ; AD = BC

a: Xét ΔABD và ΔCDB có 

\(\widehat{ABD}=\widehat{CDB}\)

BD chung

\(\widehat{ADB}=\widehat{CBD}\)

Do đó; ΔABD=ΔCDB

Suy ra: AB=CD: AD=CB

b: Xét ΔABD và ΔCDB có

AB=CD

\(\widehat{ABD}=\widehat{CDB}\)

BD chung

Do đó; ΔABD=ΔCDB

Suy ra: AD=CB và \(\widehat{ADB}=\widehat{CBD}\)

=>AD//CB

14 tháng 7 2015

bạn hỏi thế này thì chả ai muốn làm -_- dài quá 

28 tháng 12 2015

Bạn gửi từng câu nhò thì các bạn khác dễ làm hơn!

a: Xét tứ giác ABCD có

AB//CD

AD//BC

Do đó: ABCD là hình bình hành

Suy ra: AB=CD; AD=BC

b: Xét tứ giác ABCD có

AB//CD

AB=CD

Do đó: ABCD là hình bình hành

Suy ra: AD//BC và AD=BC

23 tháng 8 2018

a) Ta có : AB // CD ( do ABCD là hình thang )

AD // BC ( gt )

=> ABCD là hình bình hành

=> AD = BC ; AB = CD

b) Ta có : AB = CD ( gt )

AB // CD ( gt )

=> ABCD là hình bình hành

=> AD // BC ; AD = BC

13 tháng 10 2018

Ta có: AB//CD(vì ABCD là hình thang)

=>góc ABD=góc CDB

Xét tam giác ABD và tam giác CDB:

AB=DC(GT)

Góc ABD=Góc CDB(cmt)

DB là cạnh chung

Vậy tam giác ABD=tam giác CDB(c.g.c)

=>AD=BC(2 cạnh tương ứng); góc ADB=góc CBD( 2 góc tương ứng)

Ta có: góc ABD=góc CBD(cmt)

Mà 2 góc này nằm ở vị trí so le trong nên AD//BC(theo tiên đề Ơ-clit)(đpcm)