Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(\overrightarrow{n}=\left(a,b\right)\) là vectơ pháp tuyến của CD (\(a^2+b^2\ne0\)
Ta có phương trình CD : \(ax+by+a+b=0\)
\(S_{BCD}=S_{ACD}=8\Rightarrow d\left(A;CD\right)=\frac{2.S}{CD}=2\Rightarrow d\left(M.CD\right)=1\)
\(\Rightarrow\frac{\left|2a-b\right|}{\sqrt{a^2+b^2}}=1\Leftrightarrow3a^2-4ab=0\)\(\rightarrow\begin{cases}a=0;b=1\\a=4;b=3\end{cases}\)\(\rightarrow\begin{cases}CD:y+1=0\\CD:4x+3y+7=0\end{cases}\)
Với \(CD:y+1=0\rightarrow D\left(d;-1\right);CD^2=4.AB^2=64\Leftrightarrow\begin{cases}d=7\\d=-9:L\end{cases}\)
\(D\left(7;-1\right);\overrightarrow{AB}=\frac{1}{2}\overrightarrow{DC}=\left(-4;0\right)\rightarrow B\left(-9;-3\right)\)
Với \(CD:4x+3y+7=0\rightarrow D\left(d;\frac{-4d-7}{3}\right)\rightarrow CD^2=\frac{25\left(d+1\right)^2}{9}=64\) (loại)
Vì M; N lần lượt là trung điểm của AD; BC
M A → + M D → = 0 → B N → + C N → = 0 → .
Dựa vào đáp án, ta có nhận xét sau:
A đúng, vì :
M D → + C N → + D C → = M N → = M D → + D C → + C N → = M C → + C N → = M N → .
B đúng, vì A B → − M D → + B N → = A B → + B N → − M D → = A N → − A M → = M N → .
C đúng, vì M N → = M A → + A B → + B N → và M N → = M D → + D C → + C N → .
Suy ra
2 M N → = M A → + M D → + A B → + D C → + B N → + C N → = 0 → + A B → + D C → + 0 → = A B → + D C →
⇒ M N → = 1 2 A D → + B C → .
D sai, vì theo phân tích ở đáp án C.
Chọn D.
Xét hình thang ADCB có
Q,P lần lượt là trung điểm của AB,DC
=>QP là đường trung bình của hình thang ADCB
=>QP//AD//BC và \(QP=\dfrac{AD+BC}{2}=\dfrac{\dfrac{BC}{2}+BC}{2}=\dfrac{3}{4}BC\)
Ta có: M là trung điểm của BC
=>\(BM=MC=\dfrac{BC}{2}\)
Ta có: N là trung điểm của MC
=>\(MN=NC=\dfrac{MC}{2}=\dfrac{BC}{4}\)
BM+MN=BN
=>\(BN=\dfrac{1}{4}BC+\dfrac{1}{2}BC=\dfrac{3}{4}BC\)
=>QP=BN
Ta có: QP//BN
QP=BN
Do đó: \(\overrightarrow{QP}=\overrightarrow{BN}\)
=>Điểm E trùng với điểm P
1.
Dựng \(\overrightarrow{DB'}=\overrightarrow{CB}\)
\(k\overrightarrow{AB}=\overrightarrow{AC}+\overrightarrow{DB}\)
\(=\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{DA}+\overrightarrow{AB}\)
\(=2\overrightarrow{AB}+\overrightarrow{B'D}+\overrightarrow{DA}\)
\(=2\overrightarrow{AB}+\overrightarrow{B'A}\)
\(=2\overrightarrow{AB}+2\overrightarrow{AB}=4\overrightarrow{AB}\)
\(\Rightarrow k=4\)
Gọi M là trung điểm IB
\(\left|\overrightarrow{AB}+\overrightarrow{AI}\right|=\left|2\overrightarrow{AM}\right|=2AM\)
Ta có \(\overrightarrow{AM}^2=\left(\overrightarrow{MI}+\overrightarrow{IA}\right)^2=MI^2+IA^2-2MI.IA.cos90^o=\dfrac{1}{16}a^2+\dfrac{3}{4}a^2=\dfrac{13}{16}a^2\)
\(\Rightarrow AM=\dfrac{\sqrt{13}}{4}a\Rightarrow\left|\overrightarrow{AB}+\overrightarrow{AI}\right|=\dfrac{\sqrt{13}}{2}a\)
\(\left|\overrightarrow{MA}+\overrightarrow{MC}-\overrightarrow{MN}\right|=\left|\overrightarrow{MA}+\overrightarrow{MD}+\overrightarrow{DC}-\overrightarrow{MN}\right|\)\(=\left|\overrightarrow{DC}-\frac{1}{2}\overrightarrow{DC}-\frac{1}{2}\overrightarrow{AB}\right|=\left|\overrightarrow{DC}-\frac{3}{4}\overrightarrow{DC}\right|=\frac{1}{A}DC=\frac{a}{2}\)
a: Xét tứ giác ABDE có
AB//DE
AB=DE
=>ABDE là hình bình hành
b: Xét ΔIAB và ΔICD có
góc IAB=góc ICD
góc AIB=góc CID
=>ΔIAB đồng dạng với ΔICD
=>IA/IC=IB/ID=AB/CD=3/14
=>IA/3=IC/14=(IA+IC)/(3+14)=15/17
=>IA=45/17cm; IC=210/17cm
c: IB/ID=3/14
=>IB/3=ID/14=(IB+ID)/(3+14)=8/17
=>ID=112/17(cm)
IC=210/17; ID=112/17; CD=14
IC^2+ID^2=(210/17)^2+(112/17)^2=196
CD^2=14^2=196
=>IC^2+ID^2=CD^2
=>ΔICD vuông tại I
d: S ABCD=1/2*AC*BD=1/2*8*15=4*15=60