K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2023

Xét ΔADC có MI//DC

nên \(\dfrac{MI}{DC}=\dfrac{AM}{AD}=\dfrac{1}{2}\)

=>\(\dfrac{MI}{12}=\dfrac{1}{2}\)

=>\(MI=6\left(cm\right)\)

Xét hình thang ABCD có

M là trung điểm của AD

MN//AB//CD

Do đó: N là trung điểm của BC

Xét hình thang ABCD có

M,N lần lượt là trung điểm của AD,BC

=>MN là đường trung bình của hình thang ABCD

=>\(MN=\dfrac{AB+CD}{2}=\dfrac{6+12}{2}=\dfrac{18}{2}=9\left(cm\right)\)

24 tháng 12 2023

cho mình xin cái hình được ko

 

21 tháng 7 2021

a/
△ACD có:
- MN lần lượt đi qua trung điểm của AD và AC tại M và N
=> MN là đường trung bình của △ACD
Mặt khác, hình thang ABCD có:
- MP lần lượt đi qua trung điểm của AD và BC tại M và P
=> MP là đường trung bình của hình thang ABCD
=> MN trùng MP 
Vậy: M, N, P thẳng hàng. (đpcm)

b/
- MN là đường trung bình của △ACD (cmt)
=> \(MN=\dfrac{1}{2}CD\) 
Hay: \(MN=\dfrac{1}{2}.7=3,5\left(cm\right)\)
- MP là đường trung bình của hình thang ABCD (cmt)
=> \(MP=\dfrac{1}{2}AB.CD\)
Hay: \(MP=\dfrac{5+7}{2}=6\left(cm\right)\)
\(NP=MP-MN\)
Hay: \(NP=6-3,5=2,5\left(cm\right)\)
- Nhận xét: Độ dài MP = 1/2 tổng độ dài hai đáy AB và CD
Vậy:
\(MN=3,5\left(cm\right)\)
\(NP=2,5\left(cm\right)\)
\(MP=6\left(cm\right)\)

3 tháng 7 2023

a) Xét 2 tam giác AMC và BMD có:

\(\widehat{C}=\widehat{D}\) (góc kề một đáy)

\(AC=BD\) (cạnh bên)

\(MC=MD\) (giả thiết)

\(\Rightarrow\Delta AMC=\Delta BMC\) (cạnh.góc.cạnh)

\(\Rightarrow AM=BM\)

b) Xét 2 tam giác NMA và NMB có:

\(NA=NB\) (giả thiết)

\(NM\): cạnh chung

\(MA=MB\) (chứng minh trên)

\(\Rightarrow\Delta NMA=\Delta NMB\)

\(\Rightarrow\widehat{MNA}=\widehat{MNB}\)

Mà 2 góc \(\widehat{MNA}=\widehat{MNB}\) là 2 góc kề bù, nên:

\(\widehat{MNA}=\widehat{MNB}=\dfrac{180^o}{2}=90^o\)

Vậy MN là đường cao:

 

 

a: Xét ΔADM và ΔBCM có

AD=BC

góc ADM=góc BCM

DM=CM

=>ΔADM=ΔBCM

=>MA=MB

b: ΔMAB cân tại M

mà MN là đường trung tuyến

nên MN vuông góc AB

17 tháng 1 2021

undefined

AH
Akai Haruma
Giáo viên
22 tháng 2 2021

1. 

Độ dài đường trung bình của hình thang là:

$\frac{AB+CD}{2}=\frac{4+12}{2}=8$ (cm)

2. $M\in BC$ và $MB=MC$ nên $M$ là trung điểm của $BC$

Tam giác $ABC$ vuông tại $A$ có đường trung tuyến $AM$ ứng với cạnh huyền nên $MA=\frac{BC}{2}=\frac{7}{2}$ (cm)

1: Độ dài đường trung bình của hình thang ABCD(AB//CD) là: 

\(\dfrac{AB+CD}{2}=\dfrac{4+12}{2}=\dfrac{16}{2}=8\left(cm\right)\)

2: Ta có: MB=MC(Gt)

mà M nằm giữa hai điểm B và C(gt)

nên M là trung điểm của BC

Ta có: ΔABC vuông tại A(gt)

mà AM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)

nên \(AM=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

\(\Leftrightarrow AM=\dfrac{7}{2}=3.5\left(cm\right)\)

Vậy: AM=3,5cm