Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình thang ABCD (AB song song CD) có AB=10, BD=6, MN= 4 (M,N là trung điểm AB,CD). Tính \(S_{ABCD}\)
Xét hình thang ABCD có MN//AB//CD
nên AM/AD=BN/BC
Xét ΔADC có OM//DC
nên OM/DC=AM/AD
Xét ΔBDC có ON//DC
nên ON/DC=BN/BC
=>OM/DC=ON/DC
=>OM=ON
=>O là trung điểm của MN
Xét ΔDAB có OM//AB
nên OM/AB=DM/DA
OM/AB+OM/DC
=AM/AD+ON/DC
=AM/AD+BN/BC
=1
=>1/AB+1/DC=1/OM=2/MN
Bài 2: Từ A kẻ H, từ B kẻ K
Suy ra: AB=HK=10cm
=> BH=KC=\(\frac{26-10}{2}=8\)cm
=> BH=8 và HC= 10+8=18
=> AH2= HB.HC=8.18 <=>AH= 12
=> S= \(\frac{10+26}{2}.12=216\) cm2
Bài 1: \(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC=\sqrt{AB^2+AC^2}\)
\(\Leftrightarrow BC=\sqrt{5^2+12^2}=13\)
Suy ra: BM=MC=BC/2=6,5
\(\Rightarrow MN^2=NC^2-MC^2\) (Tam giác MNC vuông tại M)
\(\Leftrightarrow MN=\sqrt{12^2-6,5^2}=\frac{\sqrt{407}}{2}\)
diện tích hình thang ABCD là:
(4+9)*5:2=32,5(cm2)
đáp số:32,5cm2
cick cho mk nhé!