K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

+) Ta có: AH + HD = AD

CG + GB = CB

Mà AD = CB ( vì ABCD là hình bình hành).

DH = GB ( giả thiết)

Suy ra: AH = CG.

Xét ∆ AEH và  ∆ CFG:

AE = CF (gt)

∠ A = ∠ C (tính chất hình bình hành)

AH = CG ( chứng minh trên).

Do đó:  ∆ AEH =  ∆ CFG (c.g.c)

⇒ EH = FG

Xét  ∆ BEG và  ∆ DFH, ta có:

BG = DH (gt)

∠ B =  ∠ D (tính chất hình bình hành)

BE = DF (vì AB = CD và AE = CF nên AB – AE = CD – CF hay BE = DF )

Do đó:  ∆ BEG =  ∆ DFH (c.g.c) ⇒ EG = FH

Suy ra: Tứ giác EGFH là hình bình hành (vì có các cặp cạnh đối bằng nhau)

Câu 2: 6x2 + 7x - 3

= 6x2 + 9x - 2x - 3

= 3x(2x +3) - (2x + 3)

= (3x - 1)(2x + 3)

25 tháng 8

Giải:

Vì B là trung điểm của AM nên A, B, M thẳng hàng

Vì C là trung điểm của DN nên D; C; N thẳng hàng.

AB // DC (gt)

⇒ AM // DN (1)

AM = AB x 2 (gt)

DN = DC x 2

AB = DC

⇒ AM = DN (2)

Kết hợp (1) và (2) ta có:

AMND là hình bình hành (tứ giác có một cặp đối diện song song và bằng nhau thì tứ giác đó là hình bình hành.

Gọi G là giao điểm của AN và DM

AMDN là hình bình hành (cmt)

nên G là trung điểm của AN và DM

AB = BM (gt)

DC = AB (gt)

⇒ BM = DC (tính chất bác cầu) (3)

BM // DC (vì AMND là hình bình hành) (4)

Kết hợp (3) và (4) ta có: BMCD là hình bình hành (tứ giác có một cặp cạnh đối diện song song và bằng nhau thì đó là hình bình hành)

Gọi K là giao điểm của BC và DM

Thì K là trung điểm của BC và trung điểm của DM (hình bình hành có hai đường chéo cắt nhau tại trung điểm của mỗi đường)

G là trung điểm của DM (cmt)

K là trung điểm của DM (cmt)

Vậy K \(\equiv\) G; Hay trung điểm của ba đường thẳng AN; DM; BC trùng nhau(đpcm)






25 tháng 8

25 tháng 8

Giải:

Vì B là trung điểm của AM nên A, B, M thẳng hàng

Vì C là trung điểm của DN nên D; C; N thẳng hàng.

AB // DC (gt)

⇒ AM // DN (1)

AM = AB x 2 (gt)

DN = DC x 2

AB = DC

⇒ AM = DN (2)

Kết hợp (1) và (2) ta có:

AMND là hình bình hành (tứ giác có một cặp đối diện song song và bằng nhau thì tứ giác đó là hình bình hành.

Gọi G là giao điểm của AN và DM

AMDN là hình bình hành (cmt)

nên G là trung điểm của AN và DM

AB = BM (gt)

DC = AB (gt)

⇒ BM = DC (tính chất bác cầu) (3)

BM // DC (vì AMND là hình bình hành) (4)

Kết hợp (3) và (4) ta có: BMCD là hình bình hành (tứ giác có một cặp cạnh đối diện song song và bằng nhau thì đó là hình bình hành)

Gọi K là giao điểm của BC và DM

Thì K là trung điểm của BC và trung điểm của DM (hình bình hành có hai đường chéo cắt nhau tại trung điểm của mỗi đường)

G là trung điểm của DM (cmt)

K là trung điểm của DM (cmt)

Vậy K \(\equiv\) G; Hay trung điểm của ba đường thẳng AN; DM; BC trùng nhau(đpcm)






25 tháng 8

26 tháng 11 2017

Bạn ơi có nhầm lẫn gì ko?

29 tháng 6 2017

Hình bình hành

Hình bình hành

27 tháng 12 2017

Hình bình hành

Ta có; FA+AC=FC

EC+CA=EA

mà FC=AE

nên FA=EC

Ta có: \(\hat{FAD}+\hat{DAC}=180^0\) (hai góc kề bù)

\(\hat{ECB}+\hat{ACB}=180^0\) (hai góc kề bù)

\(\hat{DAC}=\hat{ACB}\) (hai góc so le trong, AD//BC)

nên \(\hat{FAD}=\hat{ECB}\)

Xét ΔFAD và ΔECB có

FA=EC

\(\hat{FAD}=\hat{ECB}\)

AD=CB

Do đó: ΔFAD=ΔECB

=>FD=EB

ΔFAD=ΔECB

=>\(\hat{AFD}=\hat{CEB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên FD//EB

Xét tứ giác BEDF có

BE//DF

BE=DF

Do đó: BEDF là hình bình hành

6 tháng 11 2018

Do P là trung điểm của BC nên :

=) CP=BP=\(\frac{BC}{2}\)

Do Q là trung điểm của AD nên:

=) AQ=QD=\(\frac{A\text{D}}{2}\)

Mà AD=BC (Tính chất hình bình hành)

=) BP=AQ=PC=QD (1)

Mà 2 cạch AP và BP lại song song với nhau (2)

TỪ (1)và(2) =) Tứ giác ABPQ là hình bình hành

6 tháng 11 2018

b) Do AD=2AB =) AB =\(\frac{A\text{D}}{2}\)=) AQ=AB

Mà AQ=BP (Tính chất hình bình hành)

Và AB=PQ (Tính chất hình bình hành)

=) AB=BP=PQ=AQ

=) Tứ giác ABPQ là hình thoi

=) 2 đường chéo AP và BQ vuông góc với nhau

Hay AP \(\perp\)BQ

c) Do tứ giác ABPQ là hình bình hành nên =) \(\widehat{A}\) =\(\widehat{P}\)\(60^0\)

Xét tam giác BPQ có :

QP=PB (chứng minh trên )

\(\widehat{P}\)=  \(60^0\)

=) Tam giác BPQ là tam giác đều

=) \(\widehat{B}\) =\(60^0\) (1)

Mà \(\widehat{A}\) =\(\widehat{C}\)=\(60^0\)(Do ABCD là hình bình hành ) (2)

Và QP lại song song với BC =) BQDC là hình thang (3)

Tu (1) ;(2) va (3) =) BQDC là hình thang cân

26 tháng 8 2016

a) Tính góc EAF 
EAF^ = 360* - (DAF^ + BAD^ + BAE^) = 360* - (60* + a + 60*) = 240* - a (1) 

b) Chứng minh rằng tam giác CEF là tam giác đều 
ABC^ = ADC^ = 180* - a 
=> CDF^ = ADC^ + ADF^ = 180* - a + 60* = 240* - a (2) 
CBE^ = ABC^ + ABE^ = 180* - a + 60* = 240* - a (3) 
AF = DF = AD = BC (4) 
CD = AB = BE = AE (5) 
(1) (2) (3) (4) và (5) => Δ CDF = ΔEBC = Δ EAF ( c.g.c) 
=> CF = CE = EF => CEF là tam giác đều

20 tháng 11 2018

a,tính góc EAF

EAF^=360* - ( DAF^+BAD^+BAE^)=360*-(60*+a+60*)=240*-a(1)

b,chứng minh rằng tam giác CÈ là tam giác đều 

ABC^=ADC^+ADF^=180*-a+60*=240*-a(2)

CBE^=ABC^+ABE^=180*-a+60*=240*-a(3)

AF=DF=AD=BC(4)

CD=AB=BE=AE(5)

(1) (2) (3) (4) và (5) => tam giác CDF=tam giác EAF (c.g.c)

=> CF=CE=EF=>CÈ là tam giác đều