Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt chiều rộng là \(x\left(m\right),x>0\).
Khi đó độ dài đường chéo là \(x+10\left(m\right)\).
Áp dụng định lí Pythagore ta có:
\(x^2+20^2=\left(x+10\right)^2=x^2+20x+100\)
\(\Leftrightarrow x=15\)(tm)
Diện tích tấm vải là: \(20\times15=300\left(m^2\right)\)
Gọi a (m), b (m) lần lượt là chiều dài và chiều rộng của mảnh vườn hình chữ nhật (a > 6, b > 0)
Diện tích mảnh vườn là: a.b (m2)
Chiều dài hơn chiều rộng 6m nên ta có: a – b = 6
Áp dụng định lý Pitagore, ta có bình phương độ dài đường chéo hình chữ nhật là a2 + b2
Theo đề ra ta có: a2 + b2 = 2,5ab
mà a – b = 6 Û a = b + 6. Thay vào a2 + b2 = 2,5ab ta được :
(b + 6)2 + b2 = 2,5b.(b + 6)
⇔ 2b2 +12b + 36 = 2,5b2 +15b
⇔ 0,5b2 + 3b - 36 = 0 Û b2 + 6b - 72 = 0
Giải ra ta được b = 6 ; a = b + 6 = 12
Diện tích mảnh vườn là S = a.b = 12.6 = 72 (m2)
Vậy mảnh vườn hình chữ nhật có diện tích 72m2.
Gọi a là chiều dài, b là chiều rộng HCN (a,b>0) (cm)
Từ 2 dữ kiện đề bài, ta lập hệ 2pt 2 ẩn:
\(\left\{{}\begin{matrix}a-b=6\\a.b=40\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b+6\\\left(b+6\right).b-40=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=b+6\\b^2+6b-40=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b+6\\\left[{}\begin{matrix}b=4\\b=-10\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}b=4\\a=10\end{matrix}\right.\\\left\{{}\begin{matrix}b=-10\left(loại\right)\\a=-16\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)
HCN có chiều dài là 10(cm), chiều rộng 4(cm)
địt ko em
lam323214 nói mất dậy à