Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Answer:
Mình chỉ biết làm a, b còn c, d mình không biết. Bạn thông cảm ạ.
a. Có: DM vuông góc với AC; DN vuông góc với BC; AC vuông góc với BC
=> CMDN là hình chữ nhật
b. Xét tam giác abc VUÔNG TẠI a:
D là trung điểm AB
=> CD là đường trung tuyến
=> CD = DB = AD
=> Tam giác CDB cân tại D
Mà DN vuông góc với BC
=> DN là đường cao và cũng là trung tuyến
=> CN = NB
Xét tứ giác DCEB:
CN = NB
DN = NE
Mà DE vuông góc BC
=> Tứ giác DCEB là hình thoi.
c) Xét tam giác \(ABC\)vuông tại \(C\)có:
\(AB^2=AC^2+BC^2\)(định lí Pythagore)
\(\Leftrightarrow AC^2=AB^2-BC^2=10^2-6^2=64=8^2\)
suy ra \(AC=8\left(cm\right)\).
\(DM\)vuông góc với \(AC\)mà \(AB\perp AC\)suy ra \(DM//AB\)
mà ta lại có \(D\)là trung điểm của \(AB\)
nên \(DM\)là đường trung bình của tam giác \(ABC\).
Suy ra \(DM=\frac{1}{2}BC=\frac{1}{2}.6=3\left(cm\right)\)
Tương tự ta cũng suy ra \(DN=\frac{1}{2}AC=4\left(cm\right)\).
\(S_{CMDN}=DM.DN=3.4=12\left(cm^2\right)\).
d)
Có \(CDBE\)là hình thoi nên để \(CDBE\)là hình vuông thì \(CD\perp BE\).
Xét tam giác \(ABC\)có \(D\)là trung điểm \(AB\)mà \(CD\perp BE\)nên tam giác \(ABC\)cân tại \(C\).
Vậy tam giác \(ABC\)vuông cân tại \(C\).
Hình bạn tự vẽ nha
a) CMR Tứ giác ABEC là hình bình hành
Vì ABCD là hcn (gt) => AB=CD và AB//CD (t/c hcn)
=> AB=CE và AB//CE ( CE= DC, E \(\in\) CD)
=> tứ giác ABEC là hình bình hành(dhnb)
b) BOCF là hình gì
Vì ABEC là hbh (cmt) => AC=BE và AB//BE 9T/c hbh)
=> 1/2 AC=1/2BE và OC//BF (1)
<=> OC= BF(2)
Từ (1) và (2) => BOCF là hbh (dhnb)
mà OB=OC (t/c đừng chéo hcn)
=> BOCF là hình thoi (dhnb)
c) DOFE là hình thang cân
Vì AC= BE ( ABEC là hbh)
mà AC =BD ( T/c hcn)
=> BE= BD => Tam giác BED cân tại B (đ/n)
=> BDE= BED (t/c tam giác cân) (1)
Vì C là trung điểm DE ( D đx E qua C) => BC là đường trung tuyến của tam giác ABC cân => BC là đương cao ( t/c các đường trong tam giác cân) => BC _l_ DE
mà BC_l_ OF (đg chéo hình thoi)
=> DE//OF ( từ _l_ -> //) (2)
Từ (1) và (2)=> OFDE là hình thang cân (dhnb hthang cân)
a: Xét tứ giác BDEG có
C là trung điểm của BE
C là trung điểm của DG
DO đó: BDEG là hình bình hành
mà BE⊥DG
nên BDEG là hình thoi
b: Ta có: BDEG là hình thoi
nên DE=DB
mà DB=AC
nên DE=AC