K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔADC vuông tại D có 

\(AC^2=AD^2+DC^2\)

hay AC=40(cm)

Gọi R là độ dài bán kính của đường tròn ngoại tiếp ΔADC vuông tại D

\(\Leftrightarrow R=\dfrac{AC}{2}=20\left(cm\right)\)

Đặt AB=x; BC=y

=>x+y=28 và x^2+y^2=20^2=400

=>x=16; y=12

=>S=16*12=192cm2

Đặt AB=x, BC=y

Theo đề, ta có:

x+y=14 và x^2+y^2=100

=>x=8; y=6

=>S=8*6=48cm2

AC=căn 2^2+2^2=2*căn 2(cm)

=>R=căn 2(cm)

S1=R^2*3,14=6,28cm2

r=AB/2=1cm

S2=1^2*3,14=3,14cm2

AH
Akai Haruma
Giáo viên
7 tháng 6 2021

Lời giải:

Gọi giao của $BO$ và $AC$ là $H$

Vì $BA=BC; OA=OC$ nên $BO$ là trung trực của $AC$

$\Rightarrow BO$ vuông góc với $AC$ tại trung điểm $H$ của $AC$.

Do đó $HO$ là đường trung bình ứng với cạnh $CD$ của tam giác $ACD$

$\Rightarrow HO=2$

$BH=BO-HO=R-2$
Theo định lý Pitago:

$BC^2-BH^2=CH^2=CO^2-HO^2$

$\Leftrightarrow (4\sqrt{3})^2-(R-2)^2=R^2-2^2$

$\Leftrightarrow 48-(R-2)^2=R^2-4$

$\Rightarrow R=6$ (cm)

 

AH
Akai Haruma
Giáo viên
7 tháng 6 2021

Hình vẽ:

23 tháng 6 2017

Sự xác định đường tròn. Tính chất đối xứng của đường tròn

2 tháng 6 2017

Đường tròn c: Đường tròn qua B với tâm I Đường tròn c_1: Đường tròn qua B_1 với tâm I_1 Đoạn thẳng h: Đoạn thẳng [B, A] Đoạn thẳng i: Đoạn thẳng [C, A] Đoạn thẳng j: Đoạn thẳng [B, C] Đoạn thẳng h_1: Đoạn thẳng [B_1, A_1] Đoạn thẳng i_1: Đoạn thẳng [C_1, A_1] Đoạn thẳng j_1: Đoạn thẳng [B_1, C_1] A = (-2.5, 0.82) A = (-2.5, 0.82) A = (-2.5, 0.82) C = (4.54, 0.72) C = (4.54, 0.72) C = (4.54, 0.72) Điểm B: Điểm trên g Điểm B: Điểm trên g Điểm B: Điểm trên g Điểm D: Điểm trên i Điểm D: Điểm trên i Điểm I: Giao điểm của k, l Điểm I: Giao điểm của k, l Điểm I: Giao điểm của k, l A_1 = (8.28, 0.89) A_1 = (8.28, 0.89) A_1 = (8.28, 0.89) A_1 = (8.28, 0.89) C_1 = (15.32, 0.79) C_1 = (15.32, 0.79) C_1 = (15.32, 0.79) C_1 = (15.32, 0.79) Điểm B_1: Điểm trên g_1 Điểm B_1: Điểm trên g_1 Điểm B_1: Điểm trên g_1 Điểm B_1: Điểm trên g_1 Điểm D_1: Điểm trên i_1 Điểm D_1: Điểm trên i_1 Điểm I_1: Giao điểm của k_1, l_1 Điểm I_1: Giao điểm của k_1, l_1 Điểm I_1: Giao điểm của k_1, l_1 Điểm I_1: Giao điểm của k_1, l_1

Em xem lại đề bài nhé. Với bài toán này, đường trong tâm I không là duy nhất.

Xét tứ giác ABCD có \(\widehat{BAD}+\widehat{BCD}=180^0\)

Do đó: ABCD là tứ giác nội tiếp

hay A,B,C,D cùng thuộc 1 đường tròn

Tâm là trung điểm của BD

Bán kính là \(\dfrac{BD}{2}\)