K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Gọi O là giao điểm của AC và BD

ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm chung của AC và BD

XétΔABD có

DM,AO là các đường trung tuyến

DM cắt AO tại G

Do đó: G là trọng tâm của ΔABD

b: XétΔABD có

G là trọng tâm

AO là đường trung tuyến

Do đó: \(GA=\dfrac{2}{3}AO=\dfrac{2}{3}\cdot\dfrac{1}{2}\cdot AC=\dfrac{1}{3}AC\)

GA+GC=AC

=>\(GC+\dfrac{1}{3}AC=AC\)

=>\(GC=\dfrac{2}{3}AC\)

\(\dfrac{GC}{GA}=\dfrac{\dfrac{2}{3}AC}{\dfrac{1}{3}AC}=\dfrac{2}{3}:\dfrac{1}{3}=2\)

=>GC=2GA

c: Xét ΔGAI và ΔGCK có

\(\widehat{GAI}=\widehat{GCK}\)(hai góc so le trong, AI//CK)

\(\widehat{AGI}=\widehat{CGK}\)

Do đó: ΔGAI đồng dạng với ΔGCK

=>\(\dfrac{GA}{GC}=\dfrac{GI}{GK}\)

=>\(\dfrac{GI}{GK}=\dfrac{1}{2}\)(1)

Xét ΔAEG và ΔCFG có

\(\widehat{AEG}=\widehat{CFG}\)

\(\widehat{AGE}=\widehat{CGF}\)

Do đó: ΔAEG đồng dạng với ΔCFG

=>\(\dfrac{GA}{GC}=\dfrac{GE}{GF}=\dfrac{1}{2}\left(2\right)\)

Từ (1) và (2) suy ra \(\dfrac{GI}{GK}=\dfrac{GE}{GF}\)

Xét ΔGIE và ΔGKF có

\(\dfrac{GI}{GK}=\dfrac{GE}{GF}\)

\(\widehat{IGE}=\widehat{KGF}\)

Do đó: ΔGIE đồng dạng với ΔGKF

=>\(\widehat{GIE}=\widehat{GKF}\)

mà hai góc này là hai góc ở vị trí so le trong

nên EI//FK

NG//AB mà N thuộc AB là sao vậy bạn?

11 tháng 12 2023

a: Gọi O là giao điểm của AC và BD

ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm chung của AC và BD

Xét ΔABD có

AO,DM là các đường trung tuyến

AO cắt DM tại G

Do đó: G là trọng tâm của ΔABD

b: Xét ΔABD có

AO là đường trung tuyến

G là trọng tâm

Do đó: \(AG=\dfrac{2}{3}\cdot AO=\dfrac{2}{3}\cdot\dfrac{1}{2}\cdot AC=\dfrac{1}{3}AC\)

Ta có: CG+GA=CA

=>\(GA+\dfrac{1}{3}AC=AC\)

=>\(GA=\dfrac{2}{3}AC\)

\(\dfrac{AG}{GA}=\dfrac{\dfrac{1}{3}AC}{\dfrac{2}{3}AC}=\dfrac{1}{3}:\dfrac{2}{3}=\dfrac{1}{2}\)

=>GA=2AG

Tham khảo:

loading...

 

a: Xét tứ giác MCDN có

MC//DN

MC=DN

MC=CD

=>MCDN là hình thoi

b: Xét ΔCMD có CM=CD và góc C=60 độ(=góc BAD)

nên ΔCMD đều

=>góc CMD=60 độ

góc BMD+góc CMD=180 độ(kề bù)

=>góc BMD=180-60=120 độ

=>góc BMD=góc B

Xét tứ giác ABMD có

BM//AD

góc ABM=góc BMD

=>ABMD là hình thang cân

=>AM=BD

c: Xét ΔKAD có BM//AD

nên BM/AD=KM/KD=KB/KA

=>KM/KD=KB/KA=1/2

=>Mlà trung điểm của KD, B là trung điểm của KA

Xét ΔKAD có

AM,DB,KN là trung tuyến

=>AM,DB,KN đồng quy