K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2019

Vẽ AA', BB' ⊥ BC (A', B' ∈ BC). Khi đó:

-Tam giác AA'D vuông cân tại A' => AA'=DA'

-Tam giác BB'C là nửa tam giác đều với ∠B=600

=> \(B'C=\sqrt{3}BB'=\sqrt{3}AA'\)

ABB'A' là hình chữ nhật nên AB = A'B' = \(2\sqrt{3}\) cm

CD = DA'+A'B'+B'C = \(AA'+2\sqrt{3}+\sqrt{3}AA'\) = 12 (cm)

=> \(AA'=\frac{12-2\sqrt{3}}{\sqrt{3}+1}=\frac{\left(12-2\sqrt{3}\right)\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)

=\(\frac{14\sqrt{3}-18}{2}=7\sqrt{3}-9\) (cm)

SABCD= (AB+CD).AA'/2= \(\left(6+\sqrt{3}\right)\left(7\sqrt{3}-9\right)\)= \(33\sqrt{3}-33\) cm2

( Chắc là kết quả như này :D )

11 tháng 6 2019

AB//CD hay AD//BC vậy bạn, hay đề bài chỉ có vậy thôi?

NV
23 tháng 8 2021

Đề bài không đúng, nhìn biểu thức \(-2CD.CD...\) là thấy sai rồi

2 tháng 11 2017

Khó thế bạn

21 tháng 10 2021

C.