K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABH vuông tại H và ΔACB vuông tại B có 

\(\widehat{BAH}\) chung

Do đó: ΔABH\(\sim\)ΔACB

7 tháng 3 2023

a.  Xét ΔABH và ΔACB có

∠A chung

∠AHB = ∠ABC = 90

⇒Đpcm

b.  AD định lý PYTAGO cho ΔABC ta tính đc AC=25 cm

vì ΔABH ∼ ΔACB ⇒ BH/BC = AB/AC

thay số vào và giải

c. câu c tự cm theo định lý Talet đảo

 

a: Xét ΔABH vuông tại H và ΔACB  vuông tại B có

góc BAH chung

=>ΔABH đồng dạng với ΔACB

b: \(AC=\sqrt{7^2+24^2}=25\left(cm\right)\)

BH=7*24/25=6,72(cm)

 

NG//AB mà N thuộc AB là sao vậy bạn?

3 tháng 8 2018

Theo chứng minh ở câu a. △ AEB đồng dạng  △ ABC theo tỉ số k = 1/2 nên dễ thấy BE = 1/2 BC hay BE = BM

Suy ra: ΔBEM cân tại B.

Xét tam giác EBC có: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Suy ra: OB là đường phân giác góc EBC

BO là đường phân giác góc ở đỉnh của tam giác cân BEM nên BO vuông góc với cạnh đáy EM (đpcm).

a) Xét ΔANI và ΔCND có 

\(\widehat{ANI}=\widehat{CND}\)(hai góc đối đỉnh)

\(\widehat{IAN}=\widehat{DCN}\left(=45^0\right)\)

Do đó: ΔANI\(\sim\)ΔCND(g-g)

10 tháng 1 2017

Vì ABCD là hình bình hành và E là trung điểm của AO (vì BE là trung tuyến của tam giác ABO) nên ta có: AO = CO = 1/2 AC; AE = 1/2 AO.

Mặt khác, theo giả thiết AC = 2AB nên dễ thấy AB = AO và do đó AE = 1/2AB

Xét hai tam giác AEB và ABC, ta có:

Góc A chung

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vậy  △ AEB đồng dạng △ ABC (c.g.c)

Suy ra: hai góc tương ứng bằng nhau  ∠ ABE =  ∠ ACB (đpcm)

a: Xét ΔAED vuông tại E và ΔCFB vuông tại F có

AD=CB

\(\widehat{ADE}=\widehat{CBF}\)

Do đó: ΔAED=ΔCFB

Suy ra AE=CF: ED=FB

Xét tứ giác AECF có 

AE//CF

AE=CF

Do đó: AECF là hình bình hành

b: Xét ΔKBF vuông tại F và ΔIDE vuông tại E có

FB=ED

\(\widehat{KBF}=\widehat{IDE}\)

Do đó: ΔKBF=ΔIDE

Suy ra: KB=ID

Xét tứ giác KBID có 

KB//ID

KB=ID

Do đó: KBID là hình bình hành

Suy ra: Hai đường chéo KI và BD cắt nhau tại trung điểm của mỗi đường

 

a: Xét ΔAED vuông tại E và ΔCFB vuông tại F có

AD=CB

\(\widehat{ADE}=\widehat{CBF}\)

Do đó: ΔAED=ΔCFB

Suy ra: AE=CF và DE=BF

Xét tứ giác AECF có 

AE//CF

AE=CF

Do đó: AECF là hình bình hành

b: Xét ΔKBF vuông tại F và ΔIDE vuông tại E có

KB=ID

\(\widehat{KBF}=\widehat{IDE}\)

Do đó: ΔKBF=ΔIDE

Suy ra: KB=ID

Xét tứ giác BKDI có

BK//ID

BK=ID

Do đó: BKDI là hình bình hành

Suy ra: Hai đường chéo BD và KI cắt nhau tại trung điểm của mỗi đường