K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2017

A B C D O 3 4 8

a) \(S_{ABCD}=8\cdot3\cdot2=72\left(cm^2\right)\)

b) Ta có: \(S_{AOB}=S_{COD}=\frac{3\cdot8}{2}=12\left(cm^2\right)\)\(S_{AOD}=S_{COB}\)

\(S_{ABCD}=S_{AOB}+S_{COD}+S_{AOD}+S_{BOC}\)

\(\Leftrightarrow2\cdot12+2\cdot2BC=72\Leftrightarrow4BC=48\Leftrightarrow BC=12\left(cm\right)\)

14 tháng 8 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Gọi O là giao điểm hai đường chéo của hình bình hành ABCD, khoảng cách từ O đến cạnh AB là OH = 2cm , đến cạnh BC là OK = 3cm

* Kéo dài OH cắt cạnh CD tại H'.

Ta có OH ⊥ BC

⇒ OH' ⊥ CD và OH' = 2cm

Suy ra HH' bằng đường cao của hình bình hành.

S A B C D  = HH'.AB ⇒ Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

* Kéo dài OK cắt AD tại K'.

Ta có: OK ⊥ BC ⇒ OK' ⊥ CD và OK' = 3 (cm)

Suy ra KK' là đường cao của hình bình hành.

S A B C D  = KK'.AB ⇒ Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Chu vi của hình bình hành ABCD là (6 + 4).2 = 20 (cm).

13 tháng 2 2022

tk hen:

undefined

Gọi O là giao điểm hai đường chéo của hình bình hành ABCD, khoảng cách từ O đến cạnh AB là OH = 2cm , đến cạnh BC là OK = 3cm

* Kéo dài OH cắt cạnh CD tại H'.

Ta có OH ⊥ BC

⇒ OH' ⊥ CD và OH' = 2cm

Suy ra HH' bằng đường cao của hình bình hành.

 = HH'.AB ⇒ 

* Kéo dài OK cắt AD tại K'.

Ta có: OK ⊥ BC ⇒ OK' ⊥ CD và OK' = 3 (cm)

Suy ra KK' là đường cao của hình bình hành.

 = KK'.AB ⇒ 

Chu vi của hình bình hành ABCD là (6 + 4).2 = 20 (cm).

12 tháng 8 2018

Ta có: SABCD = 2.0H.AB = 2.3.AB = 6AB

Mà SABCD = 48cm2

Suy ra 6AB = 48 => AB = 8(cm)

Mặt khác: 2OK.BC = SABCD => 2.4.BC = 48 => BC = 6(cm)

Chu vi hình bình hành ABCD là (8 + 6).2 = 28 (cm)