K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2017

a) Ta có b không thuộc mặt phẳng (P) và b // a, a nằm trong (P). Nên b// (P).

b) Ta có p không thuộc sàn nhà và đường thẳng p song song với đường thẳng q trong sàn nhà nên p song song với sàn nhà.

22 tháng 4 2017
a) Ta có a \(\subset\)(P) ;
b // (P)
mặt khác b không thuộc mp (P)
=> b// (P)
Ta có p không thuộc sàn nhà và đường thẳng p song song với đường thẳng q trong sàn nhà nên p song song với sàn nhà.
10 tháng 5 2017

a) Ta có b không thuộc mặt phẳng (P) và b // a, a nằm trong (P). Nên b// (P).

b) Ta có p không thuộc sàn nhà và đường thẳng p song song với đường thẳng q trong sàn nhà nên p song song với sàn nhà.

 

a. Ta có: A1B1 // mp(ABCD)

A1B1 // mp(CDD1C1)

b. Ta có: AC // A1C1

Suy ra: AC không thuộc mp(A1B1C1)

6 tháng 11 2017

A B C D O K a)Xét tứ giác OBKC, ta có:

OC//BK(BK//AC)

BO//KC(KC//BD)

=>tứ giác OBKC là hình bình hành

lại có:

AC \(\perp\) BD ( hai đường chéo)

BD//KC

=> \(\)góc OCK =90o

=> hình bình hành OBKC là hình chữ nhật

b)Ta có:

BC = OK ( do OCKD là hình chữ nhật)

AB=BC( cách cạnh hình thoi bằng nhau)

=> AB = OK

c)

* nếu tứ giác ABCD là hình vuông:

=>BD=AC

mà: BO=1/2BD

OC=1/2AC

=> BO = OC

=> hình chữ nhật OBKC là hình vuông.

Vậy HCN OBKC là hình vuông khi hình thoi ABCD là hình vuông

22 tháng 4 2017

) Những cạnh song song với cạnh CC1 là: AA1, BB1, DD1

b) Những cạnh song song với cạnh A1D1 là: B1C1, BC, AD

22 tháng 4 2017
Những cạnh song song với cạnh CC1 là : AA1; BB1; DD1
Những cạnh song song với cạnh A1D1 là B1C1; BC; AD
26 tháng 2 2020

Giải bài 58 trang 92 SGK Toán 8 Tập 2 | Giải toán lớp 8Giải bài 58 trang 92 SGK Toán 8 Tập 2 | Giải toán lớp 8

Chúc bạn học tốt~~

26 tháng 2 2020

A B C K H I

a) Xét hai Δvuông HBC và ΔKCB

∠BCH = ∠CBK (Δ ABC cân tại A) BC cạnh chung

⇒ ΔHBC = ΔKCB (cạnh huyền, góc nhọn)

⇒ CH = BK

b) Ta có: AB = AC (ΔABC cân tại A) và CH = BK

- Quảng cáo -

AK = AB – BK và AH = AC – CH ⇒ AK = AH

⇒ AK/AB = AH/AC ⇒ KH//BC

c) Kẻ đường cao AI của Δ ABC và xét Δ IAC

ΔHBC có ∠ACI = ∠BCH

⇒ ΔIAC ∽ ΔHBC(g.g) ⇒ AC/BC = IC/HC ⇒ HC = IC.BC / AC = a2/2b

Ta có : \(KH//BC\Rightarrow\frac{KH}{BC}=\frac{AH}{AC}\)

\(\Rightarrow KH=\frac{AH.BC}{AC}=\frac{\left(AC-HC\right).BC}{AC}\)

\(\Rightarrow KH=\left(b-\frac{a^2}{2b}\right)\frac{a}{b}=a-\frac{a^3}{2b^2}\)

21 tháng 10 2017

Gt và câu c viết nhầm phải không bạn? Trung tuyến BD,CE,AM chứ. Còn câu b phải qua B kẻ đường thẳng // FD nhỉ? Nếu thế thì lời giải thế này

(lời giải hơi dài tí)

*Xét tứ giác DEMC:

\(ED=\frac{1}{2}BC\)(cma)

\(CM=\frac{1}{2}BC\)(gt)

\(\Rightarrow ED=CM\)

Mà ED//BC (Cma); \(M\in BC\left(gt\right)\)=> ED//CM 

Từ 2 chứng minh trên => DEMC là hbh

=>CD//EM(1)

*Mặt khác, ta có: DF//CE(cmb); DF=CE(cmb)

                            DF//BP(cmc); DF=BP(cmc)

                      =>  CE//BP(cùng //DF); CE=BP(cùng = DF)

Từ chứng minh trên => CEBP là hbh

Nên 2 đường chéo PE và CB cắt nhau tại trung điểm mỗi đường

Mà M là trung điểm CB (gt) => M cũng là trung điểm PE 

                                         hay P,M,E thẳng hàng(2)

Từ (1),(2) CD//EP

=> CDEP là hình thang

21 tháng 10 2017

làm hộ mình câu e với

a: Xét ΔMPQ và ΔNQP có 

MQ=NP

\(\widehat{MQP}=\widehat{NPQ}\)

QP chung

Do đó: ΔMPQ=ΔNQP

Suy ra: \(\widehat{IPQ}=\widehat{IQP}\)

=>ΔIQP cân tại I

=>IQ=IP

Ta có: IM+IP=MP

IN+IQ=NQ

mà MP=NQ

và IQ=IP

nên IM=IN

Ta có: \(\widehat{OMN}=\widehat{OQP}\)

\(\widehat{ONM}=\widehat{OPQ}\)

mà \(\widehat{OQP}=\widehat{OPQ}\)

nên \(\widehat{OMN}=\widehat{ONM}\)

hay ΔOMN cân tại O

=>OM=ON

=>O nằm trên đường trung trực của MN(1)

Ta có: IM=IN

nên I nằm trên đường trung trực của MN(2)

Từ (1) và (2) suy ra OI là đường trung trực của MN

b: Ta có: OQ=OP

nên O nằm trên đường trung trực của PQ(3)

Ta có: IQ=IP

nên I nằm trên đường trung trực của PQ(4)

Ta có: KQ=KP

nên K nằm trên đường trung trực của PQ(5)

Từ (3), (4) và (5) suy ra Q,I,K thẳng hàng