Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
52 + 122 =132 => tg vuong
Sabc = 12.5/2 = 30cm2
( toán violympic cho rất thông minh, mới nhìn là mk phát hiện ra r , thui mk đi học đây)
Tam giác ABC có 3 cạnh của tam giác ứng với định lí Py-ta-go=> ABC là tam giác vuông
\(S_{ABC}=\frac{5.12}{2}=30cm^2\)
a)tam giác BHA có BI là phân giác(góc ABI=góc HBI) nên \(\dfrac{AI}{IH}=\dfrac{AB}{BH}\Rightarrow AI\cdot BH=AB\cdot IH\)
b)xét tam giác BHA và tam giác BAC có:
góc ABC chung
góc BHA=góc BAC=90 độ
\(\Rightarrow\Delta BHA\infty\Delta BAC\left(g.g\right)\\ \Rightarrow\dfrac{BH}{AB}=\dfrac{AB}{BC}\Rightarrow AB^2=BH\cdot BC\)
c)ta có:
theo câu a) \(\dfrac{AI}{IH}=\dfrac{AB}{BH}\Rightarrow\dfrac{IH}{AI}=\dfrac{BH}{AB}\left(1\right)\)
theo câu b) \(\dfrac{BH}{AB}=\dfrac{AB}{BC}\)
ta lại có BD là phân giác góc ABC nên \(\dfrac{AB}{BC}=\dfrac{AD}{DC}\Rightarrow\dfrac{AD}{DC}=\dfrac{BH}{AB}\)(2)
từ (1) và (2)\(\Rightarrow\dfrac{IH}{IA}=\dfrac{AD}{DC}\left(=\dfrac{BH}{AB}\right)\)
vì EA vuông góc với OM (gt)
BF vuông góc với OM (gt)
nên AE // BF→ góc EAO = góc OBF
Xét tam giác AEO và tam giác OBF có
góc AOE =góc BOF (đối đỉnh )
góc EAO = góc OBF (cmt)
AO = OB (gt)
→ΔAEO=ΔBFO(g.c.g)
→AE=BF(đpcm)
Có a+b+c=0
<=> a+b=-c
<=>(a+b)^3=-c^3
<=>a^3+3a^2b+3ab^2+b^3=-c^3
<=>a^3+b^3+c^3=-3ab(a+b)
<=>a^3+b^3+c^3=-3ab(-c)=3abc
\(A=\dfrac{a^2}{bc}+\dfrac{b^2}{ac}+\dfrac{c^2}{ab}=\dfrac{a^3}{abc}+\dfrac{b^3}{abc}+\dfrac{c^3}{abc}=\dfrac{a^3+b^3+c^3}{abc}=\dfrac{3abc}{abc}=3\)
Điều kiện:
\(x-1\ne0\Rightarrow x\ne1\)
\(x^3+x\ne0\Leftrightarrow x\ne0\)
\(\dfrac{100+\dfrac{99}{2}+\dfrac{98}{3}+...+\dfrac{1}{100}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{101}}-2\)
\(=\dfrac{\left(\dfrac{99}{2}+1\right)+\left(\dfrac{98}{3}+1\right)+...+\left(\dfrac{1}{100}+1\right)+1}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{101}}-2\)
\(=\dfrac{\dfrac{101}{2}+\dfrac{101}{3}+...+\dfrac{101}{100}+\dfrac{101}{101}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{101}}-2\)
\(=\dfrac{101\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}+\dfrac{1}{101}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{101}}-2\)
\(=101-2=99\)
\(\dfrac{100+\dfrac{99}{2}+....+\dfrac{1}{100}}{\dfrac{1}{2}+...+\dfrac{1}{101}}-2\\ =\dfrac{1+\left(1+\dfrac{99}{2}\right)+\left(1+\dfrac{98}{3}\right)+....+\left(1+\dfrac{1}{100}\right)}{\dfrac{1}{2}+..+\dfrac{1}{101}}-2\\ =\dfrac{\dfrac{101}{101}+\dfrac{101}{2}+....+\dfrac{101}{100}}{\dfrac{1}{2}+...+\dfrac{1}{101}}-2\\ =101-2=99\)
Mình cũng lớp 8
2k4
Song Ngư
lập nick được 10 ngày
mong giúp đỡ
Bài 2 :
a ) \(\left|x+\frac{3}{2}\right|=\frac{5}{3}\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x+\frac{3}{2}=\frac{5}{3}\\x+\frac{3}{2}=-\frac{5}{3}\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{1}{6}\\x=-\frac{19}{6}\end{array}\right.\)
b ) \(\left|x+\frac{4}{15}\right|-\left|-3,75\right|=-\left|-2,15\right|\)
\(\left|x+\frac{4}{15}\right|-3,75=-2,15\)
\(\left|x+\frac{4}{15}\right|=-2,15+3,75\)
\(\left|x+\frac{4}{15}\right|=1,6\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x+\frac{4}{15}=1,6\\x+\frac{4}{15}=-1,6\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{4}{3}\\x=-\frac{28}{15}\end{array}\right.\)
c ) \(\left|x-2\right|+\left|5-2x\right|=3\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-2=30\\5-2x=3\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=5\\x=1\end{array}\right.\)