Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hiệu điện thế cực đại giữa hai bản tụ trong khung dao động bằng 6V6V, điện dung của tụ bằng 1μF1μF . Biết dao động điện từ trong khung năng lượng được bảo toàn, năng lượng từ trường cực đại tập trung ở cuộn cảm bằng
A.18.10-6 J.
B.0,9.10-6 J.
C.9.10-6 J.
D.1,8.10-6 J.
Ta có: \(W=W_t+W_d\)
\(\Leftrightarrow W_t=W_{dmax}-W_d\)
\(=\frac{1}{2}C.U^2_0-\frac{1}{2}Cu^2\)
\(=5.10^{-5}J\)
\(W= W_{Cmax}=W_C+W_L\)
=> \(W_L = W_{Cmax}-W_C= \frac{1}{2}C.(U_0^2-u^2)= 5.10^{-7}J.\)
\(W=W_{Cmax}= W_L+W_C\)
\(=> W_L = W_{Cmax}-W_C= \frac{1}{2}C.(U_0^2-u^2)=3,96.10^{-4}J= 396\mu J.\)
Ta có : \(\frac{T_{W_{\text{đ}}}}{6}=1,5.10^{-4}\)
\(\Rightarrow\frac{T_q}{6}=\frac{2T_{W_{\text{đ}}}}{6}=3.10^{-4}\)
Vậy chọn D.
Chọn B
Năng lượng từ trường cực đại tập trung ở cuộn cảm bằng:
Gia tốc cực đại: \(a_{max}=\omega^2.A=(2\pi.2,5)^2.0,05=12,3m/s^2\)
\(W_L+W_C = W_{Cmax}\)
mà \(W_{d} = 2 W_t\) => \(W_{Cmax} = \frac{3}{2}W_C=> \frac{1}{2}CU_0^2 = \frac{3}{2}.\frac{1}{2}Cu^2.\)
=> \(u^2 = \frac{2}{3}U_0^2=> u = \pm \frac{2\sqrt{2}}{\sqrt{3}} \approx \pm 1,63 V.\)
Chọn đáp án \(D.1,63V.\)
Để duy trì dao động của mạch thì ta cần cung cấp cho mạch một năng lượng có công suất bằng công suất tỏa nhiệt trên điện trở.
Ta có: \(\frac{1}{2}CU_0^2=\frac{1}{2}LI_0^2\Rightarrow I_0=U_0\sqrt{\frac{C}{L}}\)
\(\Rightarrow I_0=5.10^{-2}\)(A)
\(\Rightarrow I=\frac{I_0}{\sqrt{2}}=\frac{5}{\sqrt{2}}.10^{-2}\)(A)
Công suất tỏa nhiệt trên điện trở: \(P=I^2R=\left(\frac{5}{\sqrt{2}}.10^{-2}\right)^2.2=2,5.10^{-3}J\)
Vậy công suất cần cung cấp là \(2,5.10^{-3}J\)