Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì hiệu là \(2013\) nên số bị trừ sẽ lớn hơn số trừ
Ta có :
Số lẻ trừ số lẻ sẽ ra số chẵn, số lẻ trừ số chắc sẽ ra số lẻ
Mà \(2013\) là số lẻ nên sẽ rơi vào trường hợp lẻ trừ chẵn
Số chắc duy nhất trong tập hợp các số nguyên tố là \(2\) suy ra số bị trừ là \(2+2013=2015\) ( tận cùng là \(5\) nên chia hết cho 5 )
Vậy hiệu hai số nguyên tố không thể bằng 2013
Gọi hai số cần tìm là a và b
Theo đề ra , ta có :
a - b = 84 và ƯCLN(a,b) = 12
Do : ƯCLN(a,b) = 12 => \(\begin{cases}a=12.k_1\\b=12.k_2\end{cases}\)
ƯCLN(k1,k2) = 1
Thay vào a - b = 84 , ta có : \(12.k_1-12.k_2=84\)
=> 12 ( k1 - k2 ) = 84
=> k1 - k2 = 84 : 12
=> k1 - k2 = 7
Hình như bài 134 đề thiếu ... :vv
Bài 135 :
Gọi hai số cần tìm là a và b
Theo đề ra , ta có :
a . b = 84 và ƯCLN(a,b) = 6
Do : ƯCLN(a,b) = 6 => \(\begin{cases}a=6.k_1\\b=6.k_2\end{cases}\)
ƯCLN(k1,k2) = 1
Thay vào a . b = 864 , ta có : 6 . k1 . 6 . k2 = 864
=> ( 6 . 6 ) . ( k1 . k2 ) = 864
=> 36 . ( k1 . k2 ) = 864
=> k1 . k2 = 864 : 36
=> k1 . k2 = 24
Ta có bảng sau :
k1 | 1 | 2 | 3 | 4 |
k2 | 24 | 12 | 8 | 6 |
+) Nếu : k1 = 1 => k2 = 24 => \(\begin{cases}a=6\\b=144\end{cases}\)
+) Nếu : k1 = 2 => k2 = 12 => \(\begin{cases}a=12\\b=72\end{cases}\)
+) Nếu : k1 = 3 => k2 = 8 => \(\begin{cases}a=18\\b=48\end{cases}\)
+) Nếu : k1 = 4 => k2 = 6 => \(\begin{cases}a=24\\b=36\end{cases}\)
Vậy ...
trong phép chia 1 số cho n có n số dư từ 0 đên n-1. có n+1 số NT chia cho n, theo nguyên lí Dirichlet, có ít nhất 2 số trong n+1 số này chia cho n có cùng 1 số dư nên hiệu của 2 số này chia hết cho n
Bn nào thông minh xinh đẹp, đẹp trai dễ thương, học giỏi, chăm chỉ giải cho mk bài này mk k cho !