Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{x^2-xy-x+y}{x^2+xy-x-y}\)=\(\frac{x\left(x-y\right)-\left(x-y\right)}{x\left(x+y\right)-\left(x+y\right)}\)=\(\frac{\left(x-1\right)\left(x-y\right)}{\left(x-1\right)\left(x+y\right)}\)=\(\frac{x-y}{x+y}\)
b) \(\frac{x^2-xy}{5y^2-5xy}\)=\(\frac{x\left(x-y\right)}{-5y\left(x-y\right)}\)=\(\frac{-x}{5y}\)
c) \(\frac{3x^2-12x+12}{x^4-8x}\)=\(\frac{3\left(x^2-4x+4\right)}{x\left(x^3-2^3\right)}\)=\(\frac{3\left(x-2\right)^2}{x\left(x-2\right)\left(x^2+2x+4\right)}\)=\(\frac{3\left(x-2\right)}{x\left(x^2+2x+4\right)}\)
\(\left(x-1\right)\left(x-3\right)\left(x-4\right)\left(x-6\right)+9\ge0\)
\(\Leftrightarrow\left(x^2-7x+6\right)\left(x^2-7x+12\right)+9\ge0\) [ Nhân ( x - 1) với ( x - 6 ) và ( x - 3 ) với ( x - 4 ) ]
Đặt \(x^2-7x+9=y\) ta được :
\(\left(x^2-7x+6\right)\left(x^2-7x+12\right)+9\ge0\)
\(\Leftrightarrow\left(y-3\right)\left(y+3\right)+9\ge0\)
\(\Leftrightarrow y^2-9+9\ge0\)
\(\Leftrightarrow y^2\ge0\)( điều hiển nhiên ) \(\Rightarrow dpcm\)
tk cho mk nka !!!
\(=\frac{\left(x^3\right)^2-\left(y^3\right)^2}{\left[\left(x^2\right)^2-\left(y^2\right)^2\right]-xy\left(x^2-y^2\right)}=\)
\(=\frac{\left(x^3-y^3\right)\left(x^3+y^3\right)}{\left(x^2-y^2\right)\left(x^2+y^2\right)-xy\left(x^2-y^2\right)}=\)
\(=\frac{\left(x+y\right)\left(x^2-xy+y^2\right)\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(x^2-y^2\right)\left(x^2+y^2-xy\right)}=\)
\(=\frac{\left(x^2-y^2\right)\left(x^2-xy+y^2\right)\left(x^2+xy+y^2\right)}{\left(x^2-y^2\right)\left(x^2-xy+y^2\right)}=x^2+xy+y^2\)
Cảm ơn bạn Nguyễn Ngọc Anh Minh nhiều nha! :)