Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
À mình nhầm 1 chút. Tích \(P=\left(1+1\right)\left(2+1\right)\left(3+1\right)...\left(2023+1\right)\) và do đó nếu \(a_0\) là số cuối cùng trên bảng thì\(\dfrac{1}{a_0}+1=\left(1+1\right)\left(2+1\right)\left(3+1\right)...\left(2023+1\right)\) hay \(a_0=\dfrac{1}{2.3.4...2024-1}\). Vậy số cuối cùng là \(\dfrac{1}{2.3.4...2024-1}\)
Nếu trên bảng có các số \(a_1,a_2,...,a_n\) thì ta xét tích \(P=\left(\dfrac{1}{a_1}+1\right)\left(\dfrac{1}{a_2}+1\right)...\left(\dfrac{1}{a_n}+1\right)\). Sau mỗi bước, ta thay 2 số \(a_i,a_j\) bằng số \(a_k=\dfrac{a_ia_j}{a_i+a_j+1}\). Khi đó \(\dfrac{1}{a_k}+1=\dfrac{a_i+a_j+1}{a_ia_j}+1=\dfrac{1}{a_i}+\dfrac{1}{a_j}+\dfrac{1}{a_ia_j}+1\) \(=\dfrac{1}{a_j}\left(\dfrac{1}{a_i}+1\right)+\left(\dfrac{1}{a_i}+1\right)\) \(=\left(\dfrac{1}{a_i}+1\right)\left(\dfrac{1}{a_j}+1\right)\)
Như vậy, sau phép biến đổi ban đầu, tích\(P=\left(\dfrac{1}{a_1}+1\right)\left(\dfrac{1}{a_2}+1\right)...\left(\dfrac{1}{a_k}+1\right)...\left(\dfrac{1}{a_n}+1\right)\)
\(P=\left(\dfrac{1}{a_1}+1\right)\left(\dfrac{1}{a_2}+1\right)...\left(\dfrac{1}{a_i}+1\right)\left(\dfrac{1}{a_j}+1\right)...\left(\dfrac{1}{a_n}+1\right)\)
Là không thay đổi. Vì vậy, số cuối cùng còn lại trên bảng chính là giá trị của tích P. Lại có
\(P=\left(1+1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)...\left(\dfrac{1}{2023}+1\right)\)
\(P=2.\dfrac{3}{2}.\dfrac{4}{3}...\dfrac{2024}{2023}=2024\)
Như vậy, số cuối cùng trên bảng sẽ bằng 2024.
a) Ta viết lại dãy đã cho thành \(1\dfrac{1}{3},1\dfrac{1}{8},1\dfrac{1}{15},...\)
Ta có thể thấy mẫu số của phần phân số trong các hỗn số của dãy là dãy các tích của 2 số cách nhau 2 đơn vị kể từ \(1.3\). Chẳng hạn \(3=1.3\), \(8=2.4\), \(15=3.5,...\) Do đó ta rút ra công thức số hạng tổng quát của dãy là \(u_n=1\dfrac{1}{n\left(n+2\right)}\)\(1+\dfrac{1}{n\left(n+2\right)}=\dfrac{n^2+2n+1}{n\left(n+2\right)}=\dfrac{\left(n+1\right)^2}{n\left(n+2\right)}\)
b) Ta cần tính \(u_1.u_2...u_{98}\). Ta thấy rằng
\(u_1.u_2...u_{98}\) \(=\dfrac{\left(1+1\right)^2}{1.3}.\dfrac{\left(2+1\right)^2}{2.4}.\dfrac{\left(3+1\right)^2}{3.5}...\dfrac{\left(98+1\right)^2}{97.99}\) \(=\dfrac{2^2}{1.3}.\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}.\dfrac{6^2}{4.6}...\dfrac{98^2}{97.99}.\dfrac{99^2}{98.100}\) \(=\dfrac{2.99}{100}=\dfrac{99}{50}\)
nhận thấy: các số hạng của D đều cách nhau 2 đv
Số số hạng: (998-10):2+1=495 (số hạng)
=>\(D=\frac{\left(998+10\right).495}{2}=249480\)
làm vậy có phải nhanh hơn ko?
Trong quá trính biến đổi giả sử trên bảng có các số a1;a2;...an ta tính đặc số P của bộ này là P=(a1+1)(a2+1)...(an+1)
Ta chứng minh đặc số P không đổi trong quá trình thực hiện phép biến đổi như trên
Thật vậy, giả sử xóa đi 2 số a,b, Khi đó trong tích P mất đi thừa số (a+1)(b+1)
Nhưng đó là ta thay a,b bằng a+b+ab nên trong tích P lại được thêm thừa số a+b+ab+1=(a+1)(b+1)
Vậy P không đổi
Như vậy P ở trạng thái ban đầu bằng P ở trạng thái cuối cùng
Ở bộ số đầu ta có:
\(P=\left(1+1\right)\left(\frac{1}{2}+1\right)\left(\frac{1}{3}+1\right)...\left(\frac{1}{2013}+1\right)=2\cdot\frac{3}{2}\cdot\frac{4}{3}....\frac{2014}{203}=2014\)
Giả sử số số cuối cùng còn lại là x thì ở số này ta có: P=x+1
Từ số suy ra x=2013