Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Biến đổi phương trình dưới về tam thức bậc 2 với ẩn x hoặc ẩn y
1/ĐKXĐ: \(x^2+4y+8\ge0\)
PT (1) \(\Leftrightarrow\left(x-2\right)\left(x-y+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=y-3\end{cases}}\)
+) Với x = 2, thay vào PT (2): \(4\sqrt{y^2+4}=y\sqrt{4y+12}\) (\(\text{ĐKXĐ:}y\ge-3\))
\(\Leftrightarrow\hept{\begin{cases}y\ge0\\16\left(y^2+4\right)=y^2\left(4y+12\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}y\ge0\\4\left(y^3-y^2-16\right)=0\end{cases}}\)
\(\Rightarrow y=\frac{1}{3}\left(1+\sqrt[3]{217-12\sqrt{327}}+\sqrt[3]{217+12\sqrt{327}}\right)\)(nghiệm khổng lồ quá chả biết tính kiểu gì nên em nêu đáp án thôi:v)
Vậy...
+) Với x = y - 3, thay vào PT (2):
\(\left(y-1\right)\sqrt{y^2+4}=y\sqrt{y^2-2y+17}\)
\(\Rightarrow\left(y-1\right)^2\left(y^2+4\right)=y^2\left(y^2-2y+17\right)\)(Biến đổi hệ quả nên ta dùng dấu suy ra)
\(\Leftrightarrow4\left(1-3y\right)\left(y+1\right)=0\Leftrightarrow\orbr{\begin{cases}y=\frac{1}{3}\\y=-1\end{cases}}\)
Thử lại ta thấy chỉ có y = - 1 \(\Rightarrow x=y-3=-4\)
$\left\{\begin{matrix}\sqrt{x+2}(x-y+3)=\sqrt{y} & \\ x^2+(x+3)(2x-y+5)=x+16 & \end{matrix}\right.$ - Phương trình - hệ phương trình - bất phương trình - Diễn đàn Toán học
Bài này nhẹ nhàng thôi :)
Đợi nọ mình nâng bậc 5 nhưng đợt này mình nâng bậc 2 thôi :v
Xử lí (x+2-y+1) = (( căn(x+2) - căn(y) )( căn(x+2)+căn(y)) +1)
-> (x-y+1) căn(x+2) - căn(y) =0
<=> (( căn(x+2) - căn(y) )( căn(x+2)+căn(y)) +1) ( căn(x+2)) - căn(y)=0
<=> ( căn(x+2) - căn(y) ) (....)=0
=> x+2=y
Còn (..) hiển nhiên >0 ( Đoạn đấy bạn tự phân tích )
P/s: Thực sự mình hong biết code gõ latex trên đây là gì -_-
\(\hept{\begin{cases}\sqrt{x+2}\left(x-y+3\right)=\sqrt{y}\left(1\right)\\x^2+\left(x+3\right)\left(2x-y+5\right)=x+16\left(2\right)\end{cases}}\)
\(ĐK:x\ge-2;y\ge0\)
Ta có: \(\left(1\right)\Leftrightarrow\left(x+2\right)\sqrt{x+2}-y\sqrt{x+2}+\sqrt{x+2}-\sqrt{y}=0\)
\(\Leftrightarrow\left(x+2-y\right)\sqrt{x+2}+\frac{x+2-y}{\sqrt{x+2}+\sqrt{y}}=0\)\(\Leftrightarrow\left(x+2-y\right)\left(\sqrt{x+2}+\frac{1}{\sqrt{x+2}+\sqrt{y}}\right)=0\)
Dễ thấy \(\sqrt{x+2}+\frac{1}{\sqrt{x+2}+\sqrt{y}}>0\)nên \(x+2-y=0\Rightarrow y=x+2\)
Thay y = x + 2 vào (2), ta được: \(x^2+\left(x+3\right)\left[2x-\left(x+2\right)+5\right]=x+16\)
\(\Leftrightarrow x^2+\left(x+3\right)^2=x+16\Leftrightarrow2x^2+5x-7=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x+7\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\left(tm\right)\\x=\frac{-7}{2}\left(ktm\right)\end{cases}}\)
Vậy phương trình có 1 nghiệm duy nhất là \(\left(x,y\right)=\left(1,3\right)\)
Ôi trời nhiều thía ? làm từng câu một ha !
a \(\hept{\begin{cases}\left(x+5\right)\left(y-2\right)=\left(x+2\right)\left(y-1\right)\\\left(x-4\right)\left(y+7\right)=\left(x-3\right)\left(y+4\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}xy-2x+5y-10=xy-x+2y-2\\xy+7x-4y-28=xy+4x-3y-12\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-x+3y=8\\3x-y=16\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-3x+9y=24\\3x-y=16\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-3x+9y=24\\3x-y-3x+9y=16+24\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-3x+9y=24\\8y=40\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=7\\y=5\end{cases}}\)
b, ĐKXĐ \(x\ne\pm y\)
Đặt \(\frac{1}{x+y}=a\) và \(\frac{1}{x-y}=b\)(a và b khác 0)
Ta có hệ \(\hept{\begin{cases}a-2b=2\\5a-4b=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2a-4b=4\\5a-4b=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2a-4b=4\\5a-4b-2a+4b=3-4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2a-4b=4\\3a=-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=-\frac{1}{3}\\b=-\frac{7}{6}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x+y}=-\frac{1}{3}\\\frac{1}{x-y}=-\frac{7}{6}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=-3\\x-y=-\frac{6}{7}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y-x+y=-3+\frac{6}{7}\\x-y=-\frac{6}{7}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2y=-\frac{15}{7}\\x-y=-\frac{6}{7}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-\frac{27}{14}\\y=-\frac{15}{14}\end{cases}}\)
ĐK: \(x\ge-2;y\ge0\)
\(\hept{\begin{cases}\sqrt{x+2}\left(x-y+3\right)=\sqrt{y}\\x^2+\left(x+3\right)\left(2x-y+5\right)=x+16\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x+2}\left[\left(x+2\right)-y+1\right]=\sqrt{y}\\3\left(x^2+4x+4\right)-2\left(x+2\right)-y\left(x+2\right)-y-9=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x+2}\left[\left(x+2\right)-y+1\right]=\sqrt{y}\\3\left(x+2\right)^2-2\left(x+2\right)-y\left(x+2\right)-y-9=0\end{cases}}\)
Đặt \(\hept{\begin{cases}\sqrt{x+2}=a\left(a\ge0\right)\\\sqrt{y}=b\left(b\ge0\right)\end{cases}}\)
\(\Rightarrow\)Hệ phương trình \(\Leftrightarrow\hept{\begin{cases}a^3+a-ab^2=b\\3a^4-2a^2-a^2b^2-b^2-9=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\left(a-b\right)\left(a^2+ab+1\right)=0\\3a^4-2a^2-a^2b^2-b^2-9=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=b\left(a^2+ab+1>0\right)\\3a^4-2a^2-a^2b^2-b^2-9=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=b\\2a^4-3a^2-9=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a^2=b^2\\a^2=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}}\)( thỏa mãn )
Kết luận: ...