Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}-2mx+y=5\left(1\right)\\mx+3y=1\left(2\right)\end{cases}}\)
tư (1) ta có: \(y=5+2mx\) \(\left(3\right)\)
thay (3) vào (2) ta được \(mx+3\left(5+2mx\right)=1\)
\(\Leftrightarrow mx+15+6mx=1\)
\(\Leftrightarrow7mx=-14\)
\(\Leftrightarrow mx=-2\) \(\left(4\right)\)
để hpt có nghiệm duy nhất khi pt \(\left(4\right)\) có nghiệm duy nhất
\(\Leftrightarrow m\ne0\)
từ (4) ta có: \(x=\frac{-2}{m}\)
từ (3) ta có \(y=5+\frac{2m.\left(-2\right)}{m}\)
\(\Leftrightarrow y=\frac{5m-4m}{m}\)
\(\Leftrightarrow y=\frac{m}{m}\)
\(\Leftrightarrow y=1\)
vậy....
b) theo bài ra \(x-y=2\)
\(\Leftrightarrow\frac{-2}{m}-1=2\)
\(\Leftrightarrow\frac{-2}{m}=3\Leftrightarrow3m=-2\Leftrightarrow m=\frac{-2}{3}\) ( TM \(m\ne0\))
vậy..
Hệ phương trình: \(\hept{\begin{cases}-2mx+y=5\\mx+3y=1\end{cases}}\)
Với \(m\ne0\)hệ phương trình có 2 nghiệm riêng biệt là \(x=-\frac{2}{m};y=1\)
Để hệ phương trình có nghiệm duy nyaats thỏa mãn x - y = 2 thì
\(-\frac{2}{m}-1=2\Rightarrow-\frac{2}{m}=1+2=3\)
\(\Rightarrow3m=-2.1\Rightarrow m=-\frac{2}{3}\left(TMĐKx\ne0\right)\)
Vậy ...........................
bạn à bạn k cho mình trước rồi mình sẽ trả lời cho.Hứa mình học CHUYÊN TOÁN mà,đừng lo nha.Hứa đó
Xét hệ: \(\hept{\begin{cases}mx+y=5\\2mx+3y=6\end{cases}}\) <=> \(\hept{\begin{cases}3mx+3y=15\\2mx+3y=6\end{cases}}\) <=> \(\hept{\begin{cases}mx+y=5\\mx=9\left(\cdot\right)\end{cases}}\)
Hệ pt đã cho có nghiệm duy nhất <=> \(\left(\cdot\right)\)có nghiệm duy nhất m \(\ne\)0
Khi đó hệ đã cho có nghiệm duy nhất \(\hept{\begin{cases}x=\frac{9}{m}\\y=-4\end{cases}}\)
Ta có: (2m - 1)x + (m + 1)y = m
Hay (2m - 1).\(\frac{9}{m}\) + -4(m + 1) = m
<=> \(\frac{18m-9}{m}-4m-4-m=0\)
<=> \(\frac{18m-9-4m^2-4m-m^2}{m}=0\)
=> -5m2 + 14m - 9 = 0
<=> 5m2 - 14m + 9 = 0
<=>5m2 - 5m - 9m + 9 = 0
<=> 5m(m - 1) - 9(m - 1) = 0
<=> (5m - 9)(m - 1) = 0 <=> \(\orbr{\begin{cases}m=\frac{9}{5}\\m=1\end{cases}\left(TM\right)}\)
Vậy với m = 9/5 hoặc m = 1 thì thỏa mãn đề bài
\(a,\hept{\begin{cases}x^2-3y=2\\9y^2-8x=8\end{cases}}\)
\(x^2-3y=2\)
\(y=\frac{1^2-2}{3}\)
\(9-\left(\frac{x^2-2}{3}\right)^2-8x=8\)
\(\Rightarrow x^4-4x^2+4-8x-8=0\)
\(\Rightarrow x^4-4x^2-8x-4=0\)
\(\Rightarrow\left(x^2-2x-2\right)\left(x^2+2x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1+\sqrt{3}\\x=1-\sqrt{3}\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=\frac{2+2\sqrt{3}}{3}\\y=\frac{2-2\sqrt{3}}{3}\end{cases}}\)
Vậy ................................
Ta có : x - y = 2 => x=2+y (1)
Mà 5x-3y=10 (2)
Thay (1) vào (2) ta dc : 5(2+y) - 3y =10
=> y = 0
=> x =0+2=2
\(5x-3y=10\)
\(\Leftrightarrow3\left(x-y\right)+2x=10\)
\(\Leftrightarrow6+2x=10\)
\(\Leftrightarrow x=2\)
giúp me pls :(((((