Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\hept{\begin{cases}mx+y=2m\\x+my=m+1\end{cases}}\)
\(\Rightarrow\left(x+y\right)\left(m+1\right)=3m+1\)
\(\Leftrightarrow\left(x+y\right)=\frac{3m+1}{m+1}=3-\frac{2}{m+1}\)
Vì x, y nguyên nên (m + 1) phải là ước nguyên của 2.
b/ \(\hept{\begin{cases}\left(m+1\right)x+my=2m-1\\mx-y=m^2-2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(m+1\right)x+my=2m-1\left(1\right)\\y=mx-m^2+2\left(2\right)\end{cases}}\)
\(\Rightarrow\left(2\right)\Leftrightarrow\left(m+1\right)x+m\left(mx-m^2+2\right)=2m-1\)
\(\Leftrightarrow\left(m^2+m+1\right)\left(x-m+1\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=m-1\\y=2-m\end{cases}}\)
\(\Rightarrow A=\left(m-1\right)\left(2-m\right)=-m^2+3m-2\le\frac{1}{4}\)
hpt có nghiệm duy nhất \(\Leftrightarrow\frac{a}{a'}\ne\frac{b}{b'}\Leftrightarrow\frac{1}{m}\ne\frac{m}{1}\Leftrightarrow m^2\ne1\Leftrightarrow m\ne\pm1\)
ta giải hpt trên:
\(\hept{\begin{cases}x+my=m+1\\mx+y=3m-1\end{cases}\Leftrightarrow\hept{\begin{cases}mx+m^2y=m^2+m\\mx+y=3m-1\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(m^2-1\right)y=\left(m-1\right)^2\\x+my=m+1\end{cases}\Leftrightarrow\hept{\begin{cases}y=\frac{m-1}{m+1}\\x=\frac{3m+1}{m+1}\end{cases}}}\)
đặt P=x.y=\(\frac{3m^2-2m-1}{m^2+2m+1}\)\(\Rightarrow\left(3-P\right)m^2-2\left(1+P\right)m-1-P=0\)
\(\Delta'=P^2+2P+1+\left(3-P\right)\left(1+P\right)=4P+4\)
pt có nghiệm \(\Leftrightarrow4P+4\ge0\Leftrightarrow P\ge-1\)
vậy GTNN là -1 khi m=0.