K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2020

Đề tuyển sinh vào trường chuyên tỉnh Tuyên Quang chuyên toán năm 2019-2020

\(\hept{\begin{cases}2\sqrt{x+y}+2\sqrt{x-y}=4+\sqrt{x^2-y^2}\left(1\right)\\\sqrt{x}+\sqrt{y}=2\left(2\right)\end{cases}}\)

\(\left(1\right)\Leftrightarrow2\sqrt{x+y}-\sqrt{\left(x-y\right)\left(x+y\right)}=4-2\sqrt{x-y}\)

\(\Leftrightarrow\sqrt{x+y}\left(2-\sqrt{x-y}\right)=2\left(2-\sqrt{x-y}\right)\)

\(\Leftrightarrow\left(2-\sqrt{x-y}\right)\left(\sqrt{x+y}-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-y}=2\\\sqrt{x+y}=2\end{cases}\Leftrightarrow\orbr{\begin{cases}x-y=4\\x+y=4\end{cases}}}\)

*) \(x=y+4\Rightarrow\sqrt{y+4}+\sqrt{y}=2\)

\(\Leftrightarrow2y+4+2\sqrt{y\left(y+4\right)}=4\)

\(\Leftrightarrow y+\sqrt{y\left(y+4\right)}=0\)

\(\Leftrightarrow y=0\Rightarrow x=4\)

*) \(x=4-y\Rightarrow\sqrt{4-y}+\sqrt{y}=2\)

\(\Leftrightarrow4+2\sqrt{y\left(4-y\right)}=4\Leftrightarrow\sqrt{y\left(4-y\right)}=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=0\Rightarrow x=4\\y=4\Rightarrow y=0\end{cases}}\)

KL:....

25 tháng 2 2020

1/HPT\(\Leftrightarrow\hept{\begin{cases}x^2+y^2=6-\left(x+y\right)=3\\\left(x+y\right)^2=9\end{cases}}\Rightarrow2xy=\left(x+y\right)^2-\left(x^2+y^2\right)=9-3=6\Rightarrow xy=3\)

Kết hợp đề bài có được: \(\hept{\begin{cases}x+y=3\\xy=3\end{cases}}\). Dùng hệ thức Viet đảo là xong.

5 tháng 7 2017

giúp câu 2

5 tháng 7 2017

\(4\left(x^2+xy+y^2\right)=3\left(x+y\right)^2+\left(x-y\right)^2.\)
Đặt (x+y)=a ; (x-y)=b là ok nhé !!!!

2 tháng 4 2020

em ko biết làm :">

\(\hept{\begin{cases}2\sqrt{x-2}+3\sqrt{y-3}=14\\\sqrt{x-2}+\sqrt{y-3}=5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2\sqrt{x-2}+3\sqrt{y-3}=14\\2\sqrt{x-2}+2\sqrt{y-3}=10\end{cases}}\)

\(\Leftrightarrow2\sqrt{x-2}+3\sqrt{y-3}-2\sqrt{x-2}-2\sqrt{y-3}=14-10\)

\(\Leftrightarrow\sqrt{y-3}=4\Leftrightarrow y-3=16\Leftrightarrow y=19\)

\(\Rightarrow\sqrt{x-2}+\sqrt{19-3}=5\)

\(\Leftrightarrow x-2=\left(5-4\right)^2\Leftrightarrow x-2=1\Leftrightarrow x=3\)

\(\hept{\begin{cases}3\left(x+1\right)-y=6-2y\\2x-y=7\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3x+3-y=6-2y\\2x-y=7\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3x+y=3\\2x-y=7\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}6x+2y=6\\6x-3y=21\end{cases}}\)

\(\Leftrightarrow6x+2y-6x+3y=6-21\)

\(\Leftrightarrow5y=-15\Leftrightarrow y=-3\)

\(\Rightarrow x=\frac{7-3}{2}=2\)

2 tháng 4 2020

\(\hept{\begin{cases}\sqrt{2}x+\left(\sqrt{2}+1\right)y=3\\x+\sqrt{2}y=2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{2}x+\sqrt{2}y+y=3\\\sqrt{2}x+y=2\sqrt{2}\end{cases}}\)

\(\Leftrightarrow\sqrt{2}x+\sqrt{2y}+y-\sqrt{2}x-y=3-2\sqrt{2}\)

\(\Leftrightarrow\sqrt{2}y=3-2\sqrt{2}\)

\(\Rightarrow y=\frac{3-2\sqrt{2}}{\sqrt{2}}=\frac{3}{\sqrt{2}}-2\)( em ko biết rút gọn sao :vv)

\(\Rightarrow x+\sqrt{2}\left(\frac{3}{\sqrt{2}}-2\right)=2\)

\(\Leftrightarrow x+3-2\sqrt{2}=2\)

\(\Leftrightarrow x=2\sqrt{2}-1\)

31 tháng 12 2017

Bài 1:

Ta có:

[tex]\left\{\begin{matrix} xy^{2}+x+y+\frac{1}{y}=4 & \\ y^{2}+x+\frac{1}{y}=3 & \end{matrix}\right.(y\neq 0)[/tex]

Từ phương trình suy ra:

[tex]\left\{\begin{matrix} y(xy+1)+\frac{xy+1}{y}=4 & \\ y^{2}+\frac{xy+1}{y}=3 & \end{matrix}\right.[/tex]

Đặt [tex]xy+1=a,y=b(b\neq 0)[/tex] ta có:

[tex]\left\{\begin{matrix} b^{2}+\frac{a}{b}=3 & \\ ab+\frac{a}{b}=4 & \end{matrix}\right.[/tex]

[tex]\Rightarrow \left\{\begin{matrix} 3b-b^{3}=a & \\ ab^{2}+a=4b & \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 3b-b^{3}=a & \\ b\left ( 2b^{2}-b^{4}-1 \right )=0 & \end{matrix}\right.[/tex]

[tex]\Leftrightarrow \left\{\begin{matrix} b=0 & \\ a=0 & \end{matrix}\right.[/tex](Loại) hoặc [tex]\left\{\begin{matrix} b=1 & \\ a=2 & \end{matrix}\right.[/tex] hoặc [tex]\left\{\begin{matrix} b=-1 & \\ a=-2 & \end{matrix}\right.[/tex]

TH1: [tex]\left\{\begin{matrix} b=1 & \\ a=2 & \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=1 & \\ y=1 & \end{matrix}\right.[/tex]

TH2: [tex]\left\{\begin{matrix} b=-1 & \\ a=-2 & \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=3 & \\ y=-1 & \end{matrix}\right.[/tex]

Vậy hệ phương trình có hai nghiệm: [tex]\left\{\begin{matrix} x=1 & \\ y=1 & \end{matrix}\right.[/tex] hoặc [tex]\left\{\begin{matrix} x=3 & \\ y=-1 & \end{matrix}\right.[/tex]

31 tháng 12 2017

Câu trả lời đầy đủ đây nhé:

attachFull36793

12 tháng 10 2017

pt(1)<=>\(\left(\sqrt{x-1}+\sqrt{y}\right)^2=4\)

3 tháng 1 2020

1) \(x^3-3x^2y-4x^2+4y^3+16xy=16y^2\Leftrightarrow x^3-3x^2y-4x^2+4y^3+16xy-16y^2=0\)

đưa về phương trình tích : \(\left(x-2y\right)^2\left(x+y-4\right)=0\) tới đây ok chưa

3 tháng 1 2020

3)  ĐK : x \(\ge\)0 ; \(y\ge3\)\(\Rightarrow x+y>0\)

đặt \(\sqrt{x+y}=a;\sqrt{x+3}=b\)

\(\Rightarrow y-3=\left(x+y\right)-\left(x+3\right)=a^2-b^2\)

PT : \(\sqrt{x+y}+\sqrt{x+3}=\frac{1}{3}\left(y-3\right)\Leftrightarrow3\sqrt{x+y}+3\sqrt{x+3}=y-3\)

\(\Leftrightarrow3\left(a+b\right)=a^2-b^2\Leftrightarrow\left(a+b\right)\left(3-a+b\right)=0\Leftrightarrow\orbr{\begin{cases}a+b=0\\a-b=3\end{cases}}\)

Mà a + b = \(\sqrt{x+y}+\sqrt{x+3}>0\)nên loại

a - b  = 3 thì \(\sqrt{x+y}-\sqrt{x+3}=3\), ta có HPT : \(\hept{\begin{cases}\sqrt{x+y}-\sqrt{x+3}=3\\\sqrt{x+y}+\sqrt{x}=x+3\end{cases}}\)

\(\Rightarrow\)\(\sqrt{x}+\sqrt{x+3}=x\Leftrightarrow\sqrt{x+3}=x-\sqrt{x}\Leftrightarrow x^2-2x\sqrt{x}-3=0\Leftrightarrow x=\left(1+\sqrt[3]{2}\right)^2\)

từ đó tìm đc y

29 tháng 11 2019

a ) \(HPT\Leftrightarrow\hept{\begin{cases}5x-y=4\left(1\right)\\3x-y=5\left(2\right)\end{cases}}\)

Lấy (1) trừ (2) :

\(\Rightarrow2x=-1\Rightarrow x=-\frac{1}{2}\)

Thay \(x=-\frac{1}{2}\) vào (1) : \(y=5x-4=5.-\frac{1}{2}-4=-\frac{13}{2}\)

Vậy HPT có nghiệm \(\left(x,y\right)=\left(-\frac{1}{2},-\frac{13}{2}\right)\)

29 tháng 11 2019

b ) \(\hept{\begin{cases}\sqrt{3}x-\sqrt{2}y=1\\\sqrt{2}x+\sqrt{3}y=\sqrt{3}\end{cases}\Leftrightarrow\hept{\begin{cases}\sqrt{6}x-2y=\sqrt{2}\left(1\right)\\\sqrt{6}x+3y=3\left(2\right)\end{cases}}}\)

Lấy (2 ) -(1) thu được :

\(5y=3-\sqrt{2}\Rightarrow y=\frac{3-\sqrt{2}}{5}\)

Thay giá trị y trên vào (1) : \(x=\frac{2y+\sqrt{2}}{\sqrt{6}}=\frac{\sqrt{6}+\sqrt{3}}{5}\)

Vậy ......