Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a.
Áp dụng BĐT Bunhiacopxky:
$A^2=(\sqrt{x-1}+\sqrt{9-x})^2\leq (x-1+9-x)(1+1)=16$
$\Rightarrow A\leq 4$
Vậy $A_{\max}=4$. Giá trị này đạt tại $x=5$
b.
$A=\frac{3(\sqrt{x}+2)+5}{\sqrt{x}+2}=3+\frac{5}{\sqrt{x}+2}$
Để $A$ nguyên thì $\frac{5}{\sqrt{x}+2}=m$ với $m$ nguyên dương
$\Leftrightarrow \sqrt{x}+2=\frac{5}{m}$
$\sqrt{x}=\frac{5-2m}{m}$
Vì $\sqrt{x}\geq 0$ nên $\frac{5-2m}{m}\geq 0$
Mà $m$ nguyên dương nên $5-2m\geq 0$
$\Leftrightarrow m\leq 2,5$.
$\Rightarrow m=1; 2$
$\Rightarrow x=9; x=\frac{1}{4}$
Ta có:
\(\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}}=\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+0}=\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+\dfrac{2\left(x+y+z\right)}{xyz}}\)
\(=\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+\dfrac{2}{xy}+\dfrac{2}{yz}+\dfrac{2}{zx}}=\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}\)
\(=\left|\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right|\) là số hữu tỉ
A= \(\frac{\sqrt{x}-3}{\sqrt{x}-1}\)
<=> \(A=1-\frac{2}{\sqrt{x}-1}\)
Để A nguyên <=> \(\frac{2}{\sqrt{x}-1}\)nguyên <=> \(\orbr{\begin{cases}2⋮\sqrt{x}-1;\sqrt{x}\in Z\\\sqrt{x}-1=\frac{1}{2k};\sqrt{x}\notin Z\end{cases}}\) với k thuộc Z*
+) Nếu \(2⋮\sqrt{x}-1\Leftrightarrow\sqrt{x}-1\in\left\{-2;2;-1;1\right\}\)\(\Leftrightarrow x\in\left\{9;0;4\right\}\)
+) \(\sqrt{x}-1=\frac{1}{2k}\Leftrightarrow\sqrt{x}=\frac{1}{2k}+1\Leftrightarrow x=\left(\frac{1}{2k}+1\right)^2\) và \(\frac{1}{2k}+1\ge0\Leftrightarrow\orbr{\begin{cases}k>0\\k\le-1\end{cases}}\)
Vậy x = 0; x = 4; x = 9 hoặc \(x=\left(\frac{1}{2k}+1\right)^2\)với \(\orbr{\begin{cases}k>0\\k\le-1\end{cases}}\); k là số nguyên