Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\Leftrightarrow x^2-3x-4x+12=0\\ \Leftrightarrow\left(x-3\right)\left(x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\\ 2,\Leftrightarrow4\left(x-3\right)+40=5x\\ \Leftrightarrow4x+28=5x\Leftrightarrow x=28\)
\(a,5\left(x-3\right)-4=2\left(x-1\right)\\ =>5x-15-4=2x-2\\ =>5x-15-4-2x+2=0\\ =>3x-17=0\\ =>3x=17\\ =>x=\dfrac{17}{3}\)
\(b,x^2-x-6=0\\ =>x^2+2x-3x-6=0\\ =>x\left(x+2\right)-3\left(x+2\right)=0\\ =>\left(x-3\right)\left(x+2\right)=0\\ =>x=3;x=-2\)
c, đk : x khác -3 ; 3
\(\Rightarrow x^2+6x+9-x^2+6x-9=36\Leftrightarrow12x=36\Leftrightarrow x=3\left(ktm\right)\)
pt vô nghiệm
d, \(\Rightarrow6x-3-5x+10=x+7\Leftrightarrow x+7=x+7\)
pt vô số nghiệm
a.\(\left|2-3x\right|=-1\left(vô.lí\right)\)
Vậy pt vô nghiệm
b.\(\Leftrightarrow4x=5,8\)
\(\Leftrightarrow x=1,45\)
c.\(ĐK:x\ne1\)
\(\Rightarrow\dfrac{3}{x-1}+\dfrac{2}{x^2+x+1}=\dfrac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\Leftrightarrow\dfrac{3\left(x^2+x+1\right)+2\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\Leftrightarrow3\left(x^2+x+1\right)+2\left(x-1\right)=3x^2\)
\(\Leftrightarrow3x^2+3x+3+2x-2-3x^2=0\)
\(\Leftrightarrow5x=-1\)
\(\Leftrightarrow x=-\dfrac{1}{5}\left(tm\right)\)
Vậy \(S=\left\{-\dfrac{1}{5}\right\}\)
Bài 1:
a chia 5 dư 2
=> a = 5k + 2(k thuộc N)
\(\Leftrightarrow a^2=\left(5k+2\right)^2=25k^2+20k+4\)
Mà \(25k^2;20k⋮5\)
=>\(a^2=25k^2+20k+4\)chia 5 dư 4
Bài 2:
P = x^2 + 4x - 1 với x bằng mấy vậy bạn ơi
Bài 1:
\(=a^8+2a^4+1-a^4\)
\(=\left(a^4+1\right)^2-a^4\)
\(=\left(a^4-a^2+1\right)\left(a^4+a^2+1\right)\)
\(=\left(a^4-a^2+1\right)\left(a^4+2a^2+1-a^2\right)\)
\(=\left(a^4-a^2+1\right)\left(a^2+1-a\right)\left(a^2+1+a\right)\)
1) PT \(\Leftrightarrow\left(\dfrac{x+1}{35}+1\right)+\left(\dfrac{x+3}{33}+1\right)=\left(\dfrac{x+5}{31}+1\right)+\left(\dfrac{x+7}{29}+1\right)\)
\(\Leftrightarrow\dfrac{x+36}{35}+\dfrac{x+36}{33}=\dfrac{x+36}{31}+\dfrac{x+36}{29}\)
\(\Leftrightarrow\left(x+36\right)\left(\dfrac{1}{29}+\dfrac{1}{31}-\dfrac{1}{33}-\dfrac{1}{35}\right)=0\)
\(\Leftrightarrow x+36=0\) (Do \(\dfrac{1}{29}+\dfrac{1}{31}-\dfrac{1}{33}-\dfrac{1}{35}>0\))
\(\Leftrightarrow x=-36\).
Vậy nghiệm của pt là x = -36.
2) x(x+1)(x+2)(x+3)= 24
⇔ x.(x+3) . (x+2).(x+1) = 24
⇔(\(x^2\) + 3x) . (\(x^2\) + 3x + 2) = 24
Đặt \(x^2\)+ 3x = b
⇒ b . (b+2)= 24
Hay: \(b^2\) +2b = 24
⇔\(b^2\) + 2b + 1 = 25
⇔\(\left(b+1\right)^2\)= 25
+ Xét b+1 = 5 ⇒ b=4 ⇒ \(x^2\)+ 3x = 4 ⇒ \(x^2\)+4x-x-4=0 ⇒x(x+4)-(x+4)=0
⇒(x-1)(x+4)=0⇒x=1 và x=-4
+ Xét b+1 = -5 ⇒ b=-6 ⇒ \(x^2\)+3x=-6 ⇒\(x^2\) + 3x + 6=0
⇒\(x^2\) + 2.x.\(\dfrac{3}{2}\) + (\(\dfrac{3}{2}\))2 = - \(\dfrac{15}{4}\) Hay ( \(x^2\) +\(\dfrac{3}{2}\) )2= -\(\dfrac{15}{4}\) (vô lí)
⇒x= 1 và x= 4
a) Ta có: \(\dfrac{AE}{AB}=\dfrac{2}{5}\)
\(\dfrac{AF}{AC}=\dfrac{4}{10}=\dfrac{2}{5}\)
Do đó: \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)\(\left(=\dfrac{2}{5}\right)\)
Xét ΔAEF và ΔABC có
\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)
\(\widehat{A}\) chung
Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)
Suy ra: \(\dfrac{AE}{AB}=\dfrac{EF}{BC}\)(Các cặp cạnh tương ứng tỉ lệ)
\(\Leftrightarrow\dfrac{2}{5}=\dfrac{EF}{12}\)
hay EF=4,8(cm)
Vậy: EF=4,8cm
x3 _ x2 _ 4x - 4 = 0
x mũ 2(x+1)- 4(x+1)=0
(x mũ 2 - 4) (x+1)=0
(x+2) (x-2) (x+1) =0
suy ra (x+2)=0
(x-2)=0
(x+1)=0
vậy x=-2
x=2
x= -1
good luck!
Sửa đề : \(x^3-x^2-4x+4=0\)
\(\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1\right)=0\Leftrightarrow x=\pm2;1\)
Lời giải:
ĐKXĐ: $x\neq 0$
$A=\frac{2x^2}{2x^2-x}=\frac{2x}{2x-1}=\frac{2x-1+1}{2x-1}=1+\frac{1}{2x-1}$
Để $A$ nguyên thì $\frac{1}{2x-1}$ nguyên
$\Rightarrow 2x-1\in Ư(1)$
$\Rightarrow 2x-1\in \left\{1; -1\right\}$
$\Rightarrow x\in \left\{1; 0\right\}$
Vì $x\neq 0$ nên $x=1$ là kết quả duy nhất.