Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhân 2 đơn thức
\(a,=x^7\\ b,=8x^7\\ c,=6x^5y^7\\ d,=-10a^6b^5c^3\)
BT áp dụng:
\(a,=10x^5\\ b,=-18a^3b^9\\ c,=-8x^6y^5z\\ d,=15a^6b^4c^3\\ e,=-8x^3y^4\)
Với x = -1 => f(-1) = (-1)3 - a2.(-1) - a - 11 = 0 (x = -1 là nghiệm của f(x))
=> -1 + a2 - a - 11 = 0
=> a2 - a - 12 = 0
=> a2 - 4a + 3a - 12 = 0
=> a(a - 4) + 3(a - 4) = 0
=> (a + 3)(a - 4) = 0
=> \(\orbr{\begin{cases}a+3=0\\a-4=0\end{cases}}\)
=> \(\orbr{\begin{cases}a=-3\\a=4\end{cases}}\)
Vậy ...
\(f\left(-1\right)=-1+a^2-a-11=a^2-a-12\)
f(x) có nghiệm là -1\(\Leftrightarrow a^2-a-12=0\)
\(\Delta=\left(-1\right)^2+4.12=49,\sqrt{\Delta}=7\)
a có 2 sự xác định
\(\orbr{\begin{cases}a=\frac{1+7}{2}=4\\\frac{1-7}{2}=-3\end{cases}}\)
ta co n^2+3n=a^2
suy ra 4n^2+12n=4a^2
suy ra (2n)^2+2.2n.3+9=4a^2+9
suy ra (2n+3)^2-(2a)2=9
suy ra (2n+3-2a)(2n+3+2a)=9
suy ra tung cai thuoc uoc cua 9
tu lam not nhe
Ta có:
\(x^3+x^2-4x=4\)
\(\Rightarrow x^3+x^2-4x-4=0\)
\(\Rightarrow\left(x^3+x^2\right)-\left(4x+4\right)=0\)
\(\Rightarrow x^2\left(x+1\right)-4\left(x+1\right)=0\)
\(\Rightarrow\left(x^2-4\right)\left(x+1\right)=0\)
\(\Rightarrow\left(x-2\right)\left(x+2\right)\left(x+1\right)=0\)
\(\Rightarrow x-2=0;x+2=0;x+1=0\)
\(\Rightarrow x\in\left\{2;-2;-1\right\}\)
a)\(2.\left(x+5\right)-x^2-5x=0\)
\(\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right).\left(2-x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\2-x=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-5\\x=2\end{cases}}\)
b)\(3x^3-48x=0\)
\(\Leftrightarrow3x\left(x^2-16\right)=0\)
\(\Leftrightarrow3x.\left(x-4\right).\left(x+4\right)=0\)
\(\Leftrightarrow\orbr{\frac{x=4}{\frac{x=0}{x=-4}}}\)
c)\(x^3+x^2-4x=4\)
\(\Leftrightarrow x^2\left(x+1\right)-4\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)\left(x+2\right)\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{x=0}{x=2}\\\overline{x=-2}\end{cases}}\)
Có : x^3-x^2+2x-8
= (x^3-2x^2)+(x^2-2x)+(4x-8)
= (x-2).(x^2+x+4)
Tk mk nha
\(A=4x^2+4x+9\)
\(A=4\left(x^2+x+\dfrac{9}{4}\right)\)
\(A=4\left(x^2+2\cdot x\cdot0,5+0,25+2\right)\)
\(A=4\left(x+0,5\right)^2+8\)
Vì \(4\left(x+0,5\right)^2\ge0\forall x\)
\(\Rightarrow4\left(x+0,5\right)^2+8\ge8\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=-0,5\)
Vậy \(MIN_A=8\Leftrightarrow x=-0,5\)
Với mọi a;b;c dương ta có:
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
\(\Leftrightarrow a^2+b^2+c^2\ge\dfrac{1}{3}\left(a+b+c\right)^2\)
Đồng thời: \(a+b+c\ge3\sqrt[3]{abc}\Rightarrow\left(a+b+c\right)^3\ge27abc\Rightarrow\dfrac{1}{abc}\ge\dfrac{27}{\left(a+b+c\right)^3}\)
Do đó:
\(VT=\dfrac{a^2+b^2+c^2}{2}+\dfrac{a^2+b^2+c^2}{abc}\ge\dfrac{\left(a+b+c\right)^2}{6}+\dfrac{\left(a+b+c\right)^2}{3abc}\ge\dfrac{\left(a+b+c\right)^2}{6}+\dfrac{9\left(a+b+c\right)^2}{\left(a+b+c\right)^3}\)
\(VT\ge\dfrac{\left(a+b+c\right)^2}{6}+\dfrac{9}{a+b+c}=\dfrac{\left(a+b+c\right)^2}{6}+\dfrac{9}{2\left(a+b+c\right)}+\dfrac{9}{2\left(a+b+c\right)}\)
\(VT\ge3\sqrt[3]{\dfrac{81\left(a+b+c\right)^2}{24\left(a+b+c\right)^2}}=\dfrac{9}{2}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=1\)
a,b,c > 0 . C/m đề nha mng nãy quên ghi đề:>>