Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(N=\frac{-7}{10^{2005}}+\frac{-7}{10^{2006}}+\frac{-8}{10^{2006}}\)
\(M=\frac{-7}{10^{2005}}+\frac{-8}{10^{2005}}+\frac{-7}{10^{2006}}\)
Ta xét M và N, ta có: \(\frac{-7}{10^{2005}}+\frac{-7}{10^{2006}}\text{ chung}\)
Mà: \(\frac{-8}{10^{2006}}>\frac{-8}{10^{2005}}\Rightarrow M>N\)
Giải
\(\frac{-7}{10^{2005}}+\frac{-15}{10^{2016}}=\frac{-7.10}{10^{2005}.10}+\frac{-15}{10^{2006}}=\frac{-70}{10^{2006}}+\frac{-15}{10^{2006}}=\frac{-85}{10^{2006}}\left(1\right).\)
\(\frac{-15}{10^{2005}}+\frac{-7}{10^{2006}}=\frac{-15.10}{10^{2005}.10}+\frac{-7}{10^{2006}}=\frac{-150}{10^{2006}}+\frac{-7}{10^{2006}}=-\frac{157}{10^{2006}}\left(2\right).\)
Từ (1) và ( 2 ) => (1) > (2)
học tốt
Ta có :
\(A=-\frac{7}{10^{2005}}+-\frac{15}{10^{2006}}=-\frac{7}{10^{2005}}+-\frac{8}{10^{2006}}+-\frac{7}{10^{2006}}\)
\(B=-\frac{15}{10^{2005}}+-\frac{7}{10^{2006}}=-\frac{7}{10^{2005}}+-\frac{8}{10^{2005}}+-\frac{7}{10^{2006}}\)
Do \(-\frac{7}{10^{2005}}=-\frac{7}{10^{2005}};-\frac{7}{10^{2006}}=-\frac{7}{10^{2006}};-\frac{8}{10^{2006}}>-\frac{8}{10^{2005}}\)
\(\Rightarrow\frac{-7}{10^{2005}}+-\frac{7}{10^{2006}}+-\frac{8}{10^{2006}}>-\frac{7}{10^{2005}}+-\frac{7}{10^{2006}}+-\frac{8}{10^{2005}}\)
\(\Rightarrow A>B\)
Vậy \(A>B\)
Chúc bạn học tốt !!!
\(A-B=\left(-\frac{7}{10^{2005}}-\frac{-15}{10^{2005}}\right)+\left(-\frac{15}{10^{2006}}-\frac{-7}{10^{2006}}\right)=\frac{8}{10^{2005}}-\frac{8}{10^{2006}}=8\left(\frac{1}{10^{2005}}-\frac{1}{10^{2006}}\right)\)
Do \(10^{2005}< 10^{2006}\Rightarrow\frac{1}{10^{2005}}>\frac{1}{10^{2006}}\Rightarrow\frac{1}{10^{2005}}-\frac{1}{10^{2006}}>0\Leftrightarrow8\left(\frac{1}{10^{2005}}-\frac{1}{10^{2006}}\right)>0\Rightarrow A-B>0\Leftrightarrow A>B\)
chiều chủ nhật đi học thêm mình hỏi cô cho
\(N=\frac{-7}{10^{2005}}+\frac{-15}{10^{2006}}=\frac{-15}{10^{2005}}+\frac{-15}{10^{2006}}+\frac{8}{10^{2005}}\)
\(M=\frac{-15}{10^{2005}}+\frac{-7}{10^{2006}}=\frac{-15}{10^{2005}}+\frac{-15}{10^{2006}}+\frac{8}{10^{2006}}\)
Vì \(10^{2005}< 10^{2006}\Rightarrow\frac{8}{10^{2005}}>\frac{8}{10^{2006}}\)
=> \(\frac{-7}{10^{2005}}+\frac{-15}{10^{2006}}=\frac{-15}{10^{2005}}+\frac{-15}{10^{2006}}+\frac{8}{10^{2005}}\)>\(\frac{-15}{10^{2005}}+\frac{-7}{10^{2006}}=\frac{-15}{10^{2005}}+\frac{-15}{10^{2006}}+\frac{8}{10^{2006}}\)
Vậy N>M