Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B5
a)\(A=\left(1-\dfrac{1}{2010}\right)\left(1-\dfrac{2}{2010}\right)\left(1-\dfrac{3}{2010}\right)\cdot...\cdot\left(1-\dfrac{2010}{2010}\right)\left(1-\dfrac{2011}{2010}\right)\\ =\left(1-\dfrac{1}{2010}\right)\left(1-\dfrac{2}{2010}\right)\left(1-\dfrac{3}{2010}\right)\cdot...\cdot\left(1-1\right)\left(1-\dfrac{2011}{2010}\right)\\ =\left(1-\dfrac{1}{2010}\right)\left(1-\dfrac{2}{2010}\right)\left(1-\dfrac{3}{2010}\right)\cdot...\cdot0\cdot\left(1-\dfrac{2011}{2010}\right)\\ =0\)
b)
\(A=\dfrac{1946}{1986}=\dfrac{1986-40}{1986}=\dfrac{1986}{1986}-\dfrac{40}{1986}=1-\dfrac{40}{1986}\\ B=\dfrac{1968}{2008}=\dfrac{2008-40}{2008}=\dfrac{2008}{2008}-\dfrac{40}{2008}=1-\dfrac{40}{2008}\)
Vì \(\dfrac{40}{1986}>\dfrac{40}{2008}\) nên \(1-\dfrac{40}{1986}< 1-\dfrac{40}{2008}\) hay \(A< B\)
B6
a) Đề sai
Sửa lại:
\(B=\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+...+\dfrac{3}{28\cdot31}\\ =\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{28}-\dfrac{1}{31}\\ =1-\dfrac{1}{31}\\ =\dfrac{30}{31}\)
b)
\(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+\dfrac{1}{8^2}\)
Ta thấy:
\(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2}=\dfrac{1}{1}-\dfrac{1}{2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}=\dfrac{1}{2}-\dfrac{1}{3}\)
\(\dfrac{1}{4^2}< \dfrac{1}{3\cdot4}=\dfrac{1}{3}-\dfrac{1}{4}\)
...
\(\dfrac{1}{8^2}< \dfrac{1}{7\cdot8}=\dfrac{1}{7}-\dfrac{1}{8}\)
\(\Rightarrow B< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{7}-\dfrac{1}{8}\\ B< 1-\dfrac{1}{8}\\ B< \dfrac{7}{8}\left(1\right)\)
Mà \(\dfrac{7}{8}< 1\left(2\right)\)
Từ (1) và (2) ta có \(B< 1\)
Theo mk được biết thì Shinichi và Kid là hai anh em nên mk thích cả hai
Công thức
(x-\(\frac{1}{3}\)):\(\frac{-12}{45}\)+1=\(\frac{1}{3}\)
(x-\(\frac{1}{3}\)):\(\frac{-12}{45}\)=\(\frac{1}{3}\)+1
(x-\(\frac{1}{3}\)):\(\frac{-12}{45}\)=\(\frac{4}{3}\)
(x-\(\frac{1}{3}\))=\(\frac{4}{3}\)x\(\frac{-12}{45}\)
(x-\(\frac{1}{3}\))=\(\frac{-16}{45}\)
x=\(\frac{-16}{45}\)+\(\frac{1}{3}\)
x=\(\frac{-1}{45}\)
\(H=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+...+\frac{10}{1400}\)
\(\Rightarrow H=\frac{5}{28}+\frac{5}{70}+\frac{5}{130}+...+\frac{5}{700}\)
\(\Rightarrow\frac{3H}{5}=\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{25.28}\)
\(\Rightarrow\frac{3H}{5}=\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{25}-\frac{1}{28}\)
\(\Rightarrow\frac{3H}{5}=\frac{1}{4}-\frac{1}{28}\)
\(\Rightarrow\frac{3H}{5}=\frac{3}{14}\)
\(\Rightarrow H=\frac{3}{14}.\frac{5}{3}\)
\(\Rightarrow H=\frac{5}{14}\)
Vậy \(H=\frac{5}{14}\)
Từ đề bài ta có:
\(T=\dfrac{1+2}{2}.\dfrac{1+3}{3}.\dfrac{1+4}{4}...\dfrac{1+98}{98}.\dfrac{1+99}{99}\)
\(=\dfrac{3}{2}.\dfrac{4}{3}.\dfrac{5}{4}...\dfrac{99}{98}.\dfrac{100}{99}\)
\(=\dfrac{100}{2}\)
\(=50\).
\(T=\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)\left(\dfrac{1}{4}+1\right)...\left(\dfrac{1}{98}+1\right)\left(\dfrac{1}{99}+1\right)\)
\(T=\dfrac{3}{2}.\dfrac{4}{3}.\dfrac{5}{4}....\dfrac{99}{98}.\dfrac{100}{99}\)
\(T=\dfrac{3.4.5......99}{3.4.5......99}.\dfrac{100}{2}\)
\(T=50\)
Số tiền phải trả:
\(2.50000\left(1+40\%\right)+48000\left(1+20\%\right)=197600\)