K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2021

2.A

24 tháng 7 2021

3.A

NV
17 tháng 2 2022

Áp dụng BĐT Bunhiacopxki (cho tất cả các bài):

1.

\(\left(3x+4y\right)^2\le\left(3^2+4^2\right)\left(x^2+y^2\right)=25\)

\(\Rightarrow\left|3x+4y\right|\le5\)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(\dfrac{3}{5};\dfrac{4}{5}\right)\)

2.

\(\left(x+2y\right)^2=\left(1.x+\sqrt{2}.\sqrt{2y}\right)^2\le\left(1+2\right)\left(x^2+2y^2\right)=3\)

\(\Rightarrow\left|x+2y\right|\le\sqrt{3}\)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(\dfrac{1}{\sqrt{3}};\dfrac{1}{\sqrt{3}}\right)\)

NV
17 tháng 2 2022

4.

a.

Áp dụng Bunhiacopxki:

\(\left(b+c+c+a+a+b\right)\left(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\right)\ge\left(a+b+c\right)^2\)

\(\Rightarrow2\left(a+b+c\right)\left(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\right)\ge\left(a+b+c\right)^2\)

\(\Rightarrow\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{a+b+c}{2}\)

Dấu "=" xảy ra khi \(a=b=c\)

18D

19C

20D

23C

24C

22 tháng 3 2022

tui chịu luôn đó

30 tháng 12 2022

Gọi tọa độ của M là: \(M_{\left(x;y\right)}\)

Ta có: \(\left\{{}\begin{matrix}\overrightarrow{MA}_{\left(-2-x;4-y\right)}\\\overrightarrow{MB}_{\left(1-x;-y\right)}\\3\overrightarrow{MC}_{\left(9-3x;-6-3y\right)}\end{matrix}\right.\)

 \(\overrightarrow{MA}+\overrightarrow{MB}=3\overrightarrow{MC}\)

Ta lại có: \(\left(\overrightarrow{MA}+\overrightarrow{MB}\right)_{\left(-1-2x;4-2y\right)}\)

Suy ra: \(\left\{{}\begin{matrix}-1-2x=9-3x\\4-2y=-6-3y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=-10\end{matrix}\right.\)

Vậy tọa độ điểm M là: \(M_{\left(10;-10\right)}\)

12 tháng 1 2022

tích vô hướng của 2 vecto AB và AC = tích độ dài . Cos góc xen giữa:

= 5 . 5 cos(120) = -25/2 

Ngủ đi bạn

12 tháng 1 2022

Mình cảm ơn ạ

NV
29 tháng 1

1.

\(x^3-mx^2+\left(m-2\right)x+1=0\)

\(\Leftrightarrow x^3-2x+1-m\left(x^2-x\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x-1\right)-mx\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-\left(m-1\right)x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2-\left(m-1\right)x-1=0\left(1\right)\end{matrix}\right.\)

Để pt có 3 nghiệm pb  \(\Leftrightarrow f\left(x\right)=x^2-\left(m-1\right)x-1=0\) có 2 nghiệm pb khác 1

\(\Leftrightarrow f\left(1\right)=1-\left(m-1\right)-1\ne0\) (pt trên hiển nhiên luôn có 2 nghiệm pb trái dấu do \(ac=-1< 0\))

\(\Leftrightarrow m\ne1\)

2.

\(x^3+\left(m+1\right)x^2+2mx+4=0\)

\(\Leftrightarrow x^3+x^2+4+mx\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2-x+2\right)+mx\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2+\left(m-1\right)x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x^2+\left(m-1\right)x+2=0\left(1\right)\end{matrix}\right.\)

Pt có 2 nghiệm khi:

TH1: (1) có nghiệm kép khác 2

\(\Rightarrow\left\{{}\begin{matrix}\Delta=\left(m-1\right)^2-8=0\\-\dfrac{b}{2a}=\dfrac{1-m}{2}\ne2\end{matrix}\right.\) \(\Rightarrow m=1\pm2\sqrt{2}\)

TH2: (1) có 2 nghiệm pb và 1 nghiệm trong đó bằng 2

\(\Rightarrow\left\{{}\begin{matrix}\Delta=\left(m-1\right)^2-8>0\\f\left(2\right)=4+2\left(m-1\right)+2=0\end{matrix}\right.\) \(\Rightarrow m=-2\)

Em cảm ơn ạ!

NV
28 tháng 1 2021

ĐKXĐ: \(x>3\)

\(\Leftrightarrow2x+2\sqrt{x-3}\sqrt{x+3}=\dfrac{4\left(x+3\right)}{\left(x-3\right)^2}\)

\(\Leftrightarrow\left(\sqrt{x+3}+\sqrt{x-3}\right)^2=\dfrac{4\left(x+3\right)}{\left(x-3\right)^2}\)

\(\Leftrightarrow\sqrt{x+3}+\sqrt{x-3}=\dfrac{2\sqrt{x+3}}{x-3}\)

\(\Leftrightarrow\dfrac{3}{\sqrt{x+3}-\sqrt{x-3}}=\dfrac{\sqrt{x+3}}{x-3}\)

\(\Leftrightarrow3x-9=x+3-\sqrt{x^2-9}\)

\(\Leftrightarrow\sqrt{x^2-9}=12-2x\) (\(x\le6\))

\(\Leftrightarrow x^2-9=144-48x+4x^2\)

\(\Leftrightarrow3x^2-48x+153=0\)

\(\Leftrightarrow x=8-\sqrt{13}\)

29 tháng 1 2021

Em cảm ơn ạ!